These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 20703740)

  • 1. Algorithms for the automated detection of diabetic retinopathy using digital fundus images: a review.
    Faust O; Acharya U R; Ng EY; Ng KH; Suri JS
    J Med Syst; 2012 Feb; 36(1):145-57. PubMed ID: 20703740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated identification of diabetic retinopathy stages using digital fundus images.
    Nayak J; Bhat PS; Acharya R; Lim CM; Kagathi M
    J Med Syst; 2008 Apr; 32(2):107-15. PubMed ID: 18461814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated detection of diabetic retinopathy on digital fundus images.
    Sinthanayothin C; Boyce JF; Williamson TH; Cook HL; Mensah E; Lal S; Usher D
    Diabet Med; 2002 Feb; 19(2):105-12. PubMed ID: 11874425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning.
    Pan X; Jin K; Cao J; Liu Z; Wu J; You K; Lu Y; Xu Y; Su Z; Jiang J; Yao K; Ye J
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):779-785. PubMed ID: 31932886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated detection of microaneurysms in digital red-free photographs: a diabetic retinopathy screening tool.
    Hipwell JH; Strachan F; Olson JA; McHardy KC; Sharp PF; Forrester JV
    Diabet Med; 2000 Aug; 17(8):588-94. PubMed ID: 11073180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid fuzzy image processing for situation assessment.
    Zahlmann G; Kochner B; Ugi I; Schuhmann D; Liesenfeld B; Wegner A; Obermaier M; Mertz M
    IEEE Eng Med Biol Mag; 2000; 19(1):76-83. PubMed ID: 10659432
    [No Abstract]   [Full Text] [Related]  

  • 9. Quantification of diabetic maculopathy by digital imaging of the fundus.
    Phillips RP; Spencer T; Ross PG; Sharp PF; Forrester JV
    Eye (Lond); 1991; 5 ( Pt 1)():130-7. PubMed ID: 2060662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy.
    Akram MU; Tariq A; Anjum MA; Javed MY
    Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Algorithms for Diagnosis of Diabetic Retinopathy and Diabetic Macula Edema- A Review.
    Suriyasekeran K; Santhanamahalingam S; Duraisamy M
    Adv Exp Med Biol; 2021; 1307():357-373. PubMed ID: 32166636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive diagnosis system for early signs and different diabetic retinopathy grades using fundus retinal images based on pathological changes detection.
    AbdelMaksoud E; Barakat S; Elmogy M
    Comput Biol Med; 2020 Nov; 126():104039. PubMed ID: 33068807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus.
    Spencer T; Olson JA; McHardy KC; Sharp PF; Forrester JV
    Comput Biomed Res; 1996 Aug; 29(4):284-302. PubMed ID: 8812075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided diagnosis of diabetic retinopathy: a review.
    Mookiah MR; Acharya UR; Chua CK; Lim CM; Ng EY; Laude A
    Comput Biol Med; 2013 Dec; 43(12):2136-55. PubMed ID: 24290931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images.
    Osareh A; Shadgar B; Markham R
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):535-45. PubMed ID: 19586814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated detection of fundus photographic red lesions in diabetic retinopathy.
    Larsen M; Godt J; Larsen N; Lund-Andersen H; Sjølie AK; Agardh E; Kalm H; Grunkin M; Owens DR
    Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):761-6. PubMed ID: 12556411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.
    Xu K; Feng D; Mi H
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images.
    Kadan AB; Subbian PS
    J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer-assisted diagnostic system for grading diabetic retinopathy.
    Dupas B; Walter T; Erginay A; Ordonez R; Deb-Joardar N; Gain P; Klein JC; Massin P
    Diabetes Metab; 2010 Jun; 36(3):213-20. PubMed ID: 20219404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.