These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 20703768)

  • 1. Diagnosis of diabetic retinopathy: automatic extraction of optic disc and exudates from retinal images using marker-controlled watershed transformation.
    Reza AW; Eswaran C; Dimyati K
    J Med Syst; 2011 Dec; 35(6):1491-501. PubMed ID: 20703768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic tracing of optic disc and exudates from color fundus images using fixed and variable thresholds.
    Reza AW; Eswaran C; Hati S
    J Med Syst; 2009 Feb; 33(1):73-80. PubMed ID: 19238899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optic disc detection and boundary extraction in retinal images.
    Basit A; Fraz MM
    Appl Opt; 2015 Apr; 54(11):3440-7. PubMed ID: 25967336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optic disc detection in retinal fundus images using gravitational law-based edge detection.
    Alshayeji M; Al-Roomi SA; Abed S
    Med Biol Eng Comput; 2017 Jun; 55(6):935-948. PubMed ID: 27638111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis.
    Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A contribution of image processing to the diagnosis of diabetic retinopathy--detection of exudates in color fundus images of the human retina.
    Walter T; Klein JC; Massin P; Erginay A
    IEEE Trans Med Imaging; 2002 Oct; 21(10):1236-43. PubMed ID: 12585705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust method for the automatic location of the optic disc and the fovea in fundus images.
    Romero-Oraá R; García M; Oraá-Pérez J; López MI; Hornero R
    Comput Methods Programs Biomed; 2020 Nov; 196():105599. PubMed ID: 32574904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation.
    Long S; Huang X; Chen Z; Pardhan S; Zheng D
    Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optic disc localization in fundus images through accumulated directional and radial blur analysis.
    Mahmood MT; Lee IH
    Comput Med Imaging Graph; 2022 Jun; 98():102058. PubMed ID: 35397336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
    Liu Q; Zou B; Chen J; Ke W; Yue K; Chen Z; Zhao G
    Comput Med Imaging Graph; 2017 Jan; 55():78-86. PubMed ID: 27665058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection.
    Ullah H; Saba T; Islam N; Abbas N; Rehman A; Mehmood Z; Anjum A
    Microsc Res Tech; 2019 Apr; 82(4):361-372. PubMed ID: 30677193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
    Roychowdhury S; Koozekanani DD; Kuchinka SN; Parhi KK
    IEEE J Biomed Health Inform; 2016 Nov; 20(6):1562-1574. PubMed ID: 26316237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy.
    Akram UM; Khan SA
    J Med Syst; 2012 Oct; 36(5):3151-62. PubMed ID: 22090037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic retinopathy grading by digital curvelet transform.
    Hajeb Mohammad Alipour S; Rabbani H; Akhlaghi MR
    Comput Math Methods Med; 2012; 2012():761901. PubMed ID: 23056148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal images benchmark for the detection of diabetic retinopathy and clinically significant macular edema (CSME).
    Noor-Ul-Huda M; Tehsin S; Ahmed S; Niazi FAK; Murtaza Z
    Biomed Tech (Berl); 2019 May; 64(3):297-307. PubMed ID: 30055096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis on diagnosing diabetic retinopathy by segmenting blood vessels, optic disc and retinal abnormalities.
    Jadhav AS; Patil PB; Biradar S
    J Med Eng Technol; 2020 Aug; 44(6):299-316. PubMed ID: 32729345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
    Akyol K; Şen B; Bayır Ş
    Comput Math Methods Med; 2016; 2016():6814791. PubMed ID: 27110272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated identification of exudates and optic disc based on inverse surface thresholding.
    Yazid H; Arof H; Isa HM
    J Med Syst; 2012 Jun; 36(3):1997-2004. PubMed ID: 21318328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.