BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20704197)

  • 1. Optimal set anode potentials vary in bioelectrochemical systems.
    Wagner RC; Call DF; Logan BE
    Environ Sci Technol; 2010 Aug; 44(16):6036-41. PubMed ID: 20704197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does bioelectrochemical cell configuration and anode potential affect biofilm response?
    Kumar A; Katuri K; Lens P; Leech D
    Biochem Soc Trans; 2012 Dec; 40(6):1308-14. PubMed ID: 23176473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of constant or dynamic low anode potentials on microbial community development in bioelectrochemical systems.
    Yan H; Yates MD; Regan JM
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9319-29. PubMed ID: 26286510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community composition is unaffected by anode potential.
    Zhu X; Yates MD; Hatzell MC; Ananda Rao H; Saikaly PE; Logan BE
    Environ Sci Technol; 2014 Jan; 48(2):1352-8. PubMed ID: 24364567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New applications and performance of bioelectrochemical systems.
    Hamelers HV; Ter Heijne A; Sleutels TH; Jeremiasse AW; Strik DP; Buisman CJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1673-85. PubMed ID: 20024546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community.
    Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J
    Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells.
    Call DF; Logan BE
    Biosens Bioelectron; 2011 Jul; 26(11):4526-31. PubMed ID: 21652198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioanode performance in bioelectrochemical systems: recent improvements and prospects.
    Pham TH; Aelterman P; Verstraete W
    Trends Biotechnol; 2009 Mar; 27(3):168-78. PubMed ID: 19187991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the role of anodic potential in the biodegradation of carbamazepine in bioelectrochemical systems.
    Tahir K; Miran W; Nawaz M; Jang J; Shahzad A; Moztahida M; Kim B; Azam M; Jeong SE; Jeon CO; Lim SR; Lee DS
    Sci Total Environ; 2019 Oct; 688():56-64. PubMed ID: 31229828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High current generation coupled to caustic production using a lamellar bioelectrochemical system.
    Rabaey K; Bützer S; Brown S; Keller J; Rozendal RA
    Environ Sci Technol; 2010 Jun; 44(11):4315-21. PubMed ID: 20446659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor.
    Rosenbaum MA; Bar HY; Beg QK; Segrè D; Booth J; Cotta MA; Angenent LT
    Bioresour Technol; 2011 Feb; 102(3):2623-8. PubMed ID: 21036604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors.
    Jung S; Regan JM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of anode potential on bioelectrochemical and electrochemical tetrathionate degradation.
    Sulonen MLK; Lakaniemi AM; Kokko ME; Puhakka JA
    Bioresour Technol; 2017 Feb; 226():173-180. PubMed ID: 27997871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ measurements of dissolved oxygen, pH and redox potential of biocathode microenvironments using microelectrodes.
    Wang Z; Deng H; Chen L; Xiao Y; Zhao F
    Bioresour Technol; 2013 Mar; 132():387-90. PubMed ID: 23228452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial uniformity of microbial diversity in a continuous bioelectrochemical system.
    Dennis PG; Guo K; Imelfort M; Jensen P; Tyson GW; Rabaey K
    Bioresour Technol; 2013 Feb; 129():599-605. PubMed ID: 23313735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system.
    TerAvest MA; Rosenbaum MA; Kotloski NJ; Gralnick JA; Angenent LT
    Biotechnol Bioeng; 2014 Apr; 111(4):692-9. PubMed ID: 24122485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment and analysis of anode-respiring bacteria from diverse anaerobic inocula.
    Miceli JF; Parameswaran P; Kang DW; Krajmalnik-Brown R; Torres CI
    Environ Sci Technol; 2012 Sep; 46(18):10349-55. PubMed ID: 22909141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells.
    Ki D; Park J; Lee J; Yoo K
    Water Sci Technol; 2008; 58(11):2195-201. PubMed ID: 19092196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and electrochemical effects of different electron acceptors on bacterial anode respiration in bioelectrochemical systems.
    Yang Y; Xiang Y; Xia C; Wu WM; Sun G; Xu M
    Bioresour Technol; 2014 Jul; 164():270-5. PubMed ID: 24862003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.