These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 20704233)

  • 1. Electrochemically enhanced removal of polycyclic aromatic basic dyes from dilute aqueous solutions by activated carbon cloth electrodes.
    Bayram E; Ayranci E
    Environ Sci Technol; 2010 Aug; 44(16):6331-6. PubMed ID: 20704233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption/electrosorption of catechol and resorcinol onto high area activated carbon cloth.
    Bayram E; Hoda N; Ayranci E
    J Hazard Mater; 2009 Sep; 168(2-3):1459-66. PubMed ID: 19345487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of Basic Violet 14 in aqueous solutions using KMnO4-modified activated carbon.
    Shi Q; Zhang J; Zhang C; Nie W; Zhang B; Zhang H
    J Colloid Interface Sci; 2010 Mar; 343(1):188-93. PubMed ID: 20036370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics.
    Rodríguez A; García J; Ovejero G; Mestanza M
    J Hazard Mater; 2009 Dec; 172(2-3):1311-20. PubMed ID: 19726130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic and equilibrium studies on the removal of acid dyes from aqueous solutions by adsorption onto activated carbon cloth.
    Hoda N; Bayram E; Ayranci E
    J Hazard Mater; 2006 Sep; 137(1):344-51. PubMed ID: 16563617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-through electrosorption process for removal of 2,4-D pesticide from aqueous solutions onto activated carbon cloth fixed-bed electrodes.
    Bayram E; Kızıl Ç; Ayrancı E
    Water Sci Technol; 2018 Feb; 77(3-4):848-854. PubMed ID: 29431730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of dyes from aqueous solutions on activated charcoal.
    Iqbal MJ; Ashiq MN
    J Hazard Mater; 2007 Jan; 139(1):57-66. PubMed ID: 16849033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption behaviors of some phenolic compounds onto high specific area activated carbon cloth.
    Ayranci E; Duman O
    J Hazard Mater; 2005 Sep; 124(1-3):125-32. PubMed ID: 15941619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced removal of 8-quinolinecarboxylic acid in an activated carbon cloth by electroadsorption in aqueous solution.
    López-Bernabeu S; Ruiz-Rosas R; Quijada C; Montilla F; Morallón E
    Chemosphere; 2016 Feb; 144():982-8. PubMed ID: 26433936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of adsorption and electrosorption of bentazone on activated carbon cloth in aqueous solutions.
    Ania CO; Béguin F
    Water Res; 2007 Aug; 41(15):3372-80. PubMed ID: 17490705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths.
    Huang CC; Su YJ
    J Hazard Mater; 2010 Mar; 175(1-3):477-83. PubMed ID: 19896268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics.
    Malik PK
    J Hazard Mater; 2004 Sep; 113(1-3):81-8. PubMed ID: 15363517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite.
    El-Bindary AA; Diab MA; Hussien MA; El-Sonbati AZ; Eessa AM
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():70-7. PubMed ID: 24463242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of bentazon and propanil from aqueous solutions at the high area activated carbon-cloth.
    Ayranci E; Hoda N
    Chemosphere; 2004 Nov; 57(8):755-62. PubMed ID: 15488566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy.
    Duman O; Ayranci E
    J Hazard Mater; 2010 Feb; 174(1-3):359-67. PubMed ID: 19815343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull.
    Thinakaran N; Baskaralingam P; Pulikesi M; Panneerselvam P; Sivanesan S
    J Hazard Mater; 2008 Mar; 151(2-3):316-22. PubMed ID: 17689864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of anionic surfactants from aqueous solutions by adsorption onto high area activated carbon cloth studied by in situ UV spectroscopy.
    Ayranci E; Duman O
    J Hazard Mater; 2007 Sep; 148(1-2):75-82. PubMed ID: 17363147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of Malachite Green dye onto activated carbon derived from Borassus aethiopum flower biomass.
    Nethaji S; Sivasamy A; Thennarasu G; Saravanan S
    J Hazard Mater; 2010 Sep; 181(1-3):271-80. PubMed ID: 20537793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and adsorption study of acid dye removal using activated carbon.
    Gómez V; Larrechi MS; Callao MP
    Chemosphere; 2007 Oct; 69(7):1151-8. PubMed ID: 17531288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions.
    Hameed BH
    J Hazard Mater; 2009 Jan; 161(2-3):753-9. PubMed ID: 18499346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.