These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 20704274)
1. Balance between folding and degradation for Hsp90-dependent client proteins: a key role for CHIP. Kundrat L; Regan L Biochemistry; 2010 Sep; 49(35):7428-38. PubMed ID: 20704274 [TBL] [Abstract][Full Text] [Related]
2. CHIP: A Co-chaperone for Degradation by the Proteasome and Lysosome. Chakraborty A; Edkins AL Subcell Biochem; 2023; 101():351-387. PubMed ID: 36520313 [TBL] [Abstract][Full Text] [Related]
3. Identification of residues on Hsp70 and Hsp90 ubiquitinated by the cochaperone CHIP. Kundrat L; Regan L J Mol Biol; 2010 Jan; 395(3):587-94. PubMed ID: 19913553 [TBL] [Abstract][Full Text] [Related]
4. CHIP participates in protein triage decisions by preferentially ubiquitinating Hsp70-bound substrates. Stankiewicz M; Nikolay R; Rybin V; Mayer MP FEBS J; 2010 Aug; 277(16):3353-67. PubMed ID: 20618441 [TBL] [Abstract][Full Text] [Related]
5. C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Muller P; Ruckova E; Halada P; Coates PJ; Hrstka R; Lane DP; Vojtesek B Oncogene; 2013 Jun; 32(25):3101-10. PubMed ID: 22824801 [TBL] [Abstract][Full Text] [Related]
6. Hsp70 and Hsp90 oppositely regulate TGF-β signaling through CHIP/Stub1. Shang Y; Xu X; Duan X; Guo J; Wang Y; Ren F; He D; Chang Z Biochem Biophys Res Commun; 2014 Mar; 446(1):387-92. PubMed ID: 24613385 [TBL] [Abstract][Full Text] [Related]
7. CHIP: a co-chaperone for degradation by the proteasome. Edkins AL Subcell Biochem; 2015; 78():219-42. PubMed ID: 25487024 [TBL] [Abstract][Full Text] [Related]
8. The cochaperone CHIP marks Hsp70- and Hsp90-bound substrates for degradation through a very flexible mechanism. Quintana-Gallardo L; Martín-Benito J; Marcilla M; Espadas G; Sabidó E; Valpuesta JM Sci Rep; 2019 Mar; 9(1):5102. PubMed ID: 30911017 [TBL] [Abstract][Full Text] [Related]
9. Ca2+/S100 proteins act as upstream regulators of the chaperone-associated ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein). Shimamoto S; Kubota Y; Yamaguchi F; Tokumitsu H; Kobayashi R J Biol Chem; 2013 Mar; 288(10):7158-68. PubMed ID: 23344957 [TBL] [Abstract][Full Text] [Related]
10. Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperone system in cancer. Ruckova E; Muller P; Nenutil R; Vojtesek B Cell Mol Biol Lett; 2012 Sep; 17(3):446-58. PubMed ID: 22669480 [TBL] [Abstract][Full Text] [Related]
11. The switch from client holding to folding in the Hsp70/Hsp90 chaperone machineries is regulated by a direct interplay between co-chaperones. Dahiya V; Rutz DA; Moessmer P; Mühlhofer M; Lawatscheck J; Rief M; Buchner J Mol Cell; 2022 Apr; 82(8):1543-1556.e6. PubMed ID: 35176233 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. Wang AM; Morishima Y; Clapp KM; Peng HM; Pratt WB; Gestwicki JE; Osawa Y; Lieberman AP J Biol Chem; 2010 May; 285(21):15714-23. PubMed ID: 20348093 [TBL] [Abstract][Full Text] [Related]
14. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation. Assimon VA; Southworth DR; Gestwicki JE Biochemistry; 2015 Dec; 54(48):7120-31. PubMed ID: 26565746 [TBL] [Abstract][Full Text] [Related]
15. Insights into the conformational dynamics of the E3 ubiquitin ligase CHIP in complex with chaperones and E2 enzymes. Graf C; Stankiewicz M; Nikolay R; Mayer MP Biochemistry; 2010 Mar; 49(10):2121-9. PubMed ID: 20146531 [TBL] [Abstract][Full Text] [Related]
16. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Connell P; Ballinger CA; Jiang J; Wu Y; Thompson LJ; Höhfeld J; Patterson C Nat Cell Biol; 2001 Jan; 3(1):93-6. PubMed ID: 11146632 [TBL] [Abstract][Full Text] [Related]
17. Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading mechanism. Wang RY; Noddings CM; Kirschke E; Myasnikov AG; Johnson JL; Agard DA Nature; 2022 Jan; 601(7893):460-464. PubMed ID: 34937942 [TBL] [Abstract][Full Text] [Related]
18. The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Bhattacharya K; Picard D Cell Mol Life Sci; 2021 Dec; 78(23):7257-7273. PubMed ID: 34677645 [TBL] [Abstract][Full Text] [Related]
19. Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Alvira S; Cuéllar J; Röhl A; Yamamoto S; Itoh H; Alfonso C; Rivas G; Buchner J; Valpuesta JM Nat Commun; 2014 Nov; 5():5484. PubMed ID: 25407331 [TBL] [Abstract][Full Text] [Related]
20. Proposal for a role of the Hsp90/Hsp70-based chaperone machinery in making triage decisions when proteins undergo oxidative and toxic damage. Pratt WB; Morishima Y; Peng HM; Osawa Y Exp Biol Med (Maywood); 2010 Mar; 235(3):278-89. PubMed ID: 20404045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]