BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20704275)

  • 1. Sensing of transcription factor through controlled-assembly of metal nanoparticles modified with segmented DNA elements.
    Tan YN; Su X; Zhu Y; Lee JY
    ACS Nano; 2010 Sep; 4(9):5101-10. PubMed ID: 20704275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold-nanoparticle-based assay for instantaneous detection of nuclear hormone receptor-response elements interactions.
    Tan YN; Su X; Liu ET; Thomsen JS
    Anal Chem; 2010 Apr; 82(7):2759-65. PubMed ID: 20199029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of metal nanoparticles aggregation and dispersion by PNA and PNA-DNA complexes, and its application for colorimetric DNA detection.
    Su X; Kanjanawarut R
    ACS Nano; 2009 Sep; 3(9):2751-9. PubMed ID: 19708641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme protein assisted dispersion of gold nanoparticle multilayers on chips: from stabilization to high-density double-stranded DNAs fabricated in situ for protein/DNA binding.
    Li YT; Li CW; Sung WC; Chen SH
    Anal Chem; 2009 May; 81(10):4076-81. PubMed ID: 19358570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effect of target binding on hairpin aptamer sticky-end pairing-induced gold nanoparticle assembly for light-up colorimetric protein assay.
    Wu ZS; Lu H; Liu X; Hu R; Zhou H; Shen G; Yu RQ
    Anal Chem; 2010 May; 82(9):3890-8. PubMed ID: 20394414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution.
    Wang H; Wang Y; Jin J; Yang R
    Anal Chem; 2008 Dec; 80(23):9021-8. PubMed ID: 19551976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic-light-scattering-based sequence-specific recognition of double-stranded DNA with oligonucleotide-functionalized gold nanoparticles.
    Miao XM; Xiong C; Wang WW; Ling LS; Shuai XT
    Chemistry; 2011 Sep; 17(40):11230-6. PubMed ID: 21922555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of gold nanoparticle-based colorimetric biosensing assays.
    Zhao W; Brook MA; Li Y
    Chembiochem; 2008 Oct; 9(15):2363-71. PubMed ID: 18821551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersions based on noble metal nanoparticles-DNA conjugates.
    Capek I
    Adv Colloid Interface Sci; 2011 Apr; 163(2):123-43. PubMed ID: 21382609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical detection of DNA hybridization based on signal DNA probe modified with Au and apoferritin nanoparticles.
    Yu F; Li G; Qu B; Cao W
    Biosens Bioelectron; 2010 Nov; 26(3):1114-7. PubMed ID: 20833018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine detection by using gold nanoparticles and designed aptamer sequences.
    Li F; Zhang J; Cao X; Wang L; Li D; Song S; Ye B; Fan C
    Analyst; 2009 Jul; 134(7):1355-60. PubMed ID: 19562201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor.
    Ou LJ; Jin PY; Chu X; Jiang JH; Yu RQ
    Anal Chem; 2010 Jul; 82(14):6015-24. PubMed ID: 20565105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electrochemical approach for detection of specific DNA-binding protein by gold nanoparticle-catalyzed silver enhancement.
    Pan Q; Zhang R; Bai Y; He N; Lu Z
    Anal Biochem; 2008 Apr; 375(2):179-86. PubMed ID: 18164677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes.
    Kanjanawarut R; Su X
    Anal Chem; 2009 Aug; 81(15):6122-9. PubMed ID: 20337394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol-specific and nonspecific interactions between DNA and gold nanoparticles.
    Cárdenas M; Barauskas J; Schillén K; Brennan JL; Brust M; Nylander T
    Langmuir; 2006 Mar; 22(7):3294-9. PubMed ID: 16548591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual scanometric detection of DNA through silver enhancement regulated by gold-nanoparticle aggregation with a molecular beacon as the trigger.
    Ji H; Dong H; Yan F; Lei J; Ding L; Gao W; Ju H
    Chemistry; 2011 Sep; 17(40):11344-9. PubMed ID: 21850726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of single-stranded DNA binding protein-nucleic acids interactions using unmodified gold nanoparticles and its application for detection of single nucleotide polymorphisms.
    Tan YN; Lee KH; Su X
    Anal Chem; 2011 Jun; 83(11):4251-7. PubMed ID: 21524056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating DNA-templated silver nanoclusters for fluorescence turn-on detection of thiol compounds.
    Huang Z; Pu F; Lin Y; Ren J; Qu X
    Chem Commun (Camb); 2011 Mar; 47(12):3487-9. PubMed ID: 21311783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAXS measurement of aggregate of DNA modified gold nanoparticles.
    Yamakoshi S; Sakai Y; Shinohara Y; Amemiya Y; Kanayama N; Takarada T; Maeda M; Ito K
    Nucleic Acids Symp Ser (Oxf); 2007; (51):335-6. PubMed ID: 18029723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.