These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20704347)

  • 1. Low-frequency vibrational spectrum of water around cyclodextrin and its methyl-substituted derivatives.
    Jana M; Bandyopadhyay S
    Langmuir; 2010 Sep; 26(17):14097-102. PubMed ID: 20704347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of hydrogen bonds in aqueous solutions of cyclodextrin and its methyl-substituted forms.
    Jana M; Bandyopadhyay S
    J Chem Phys; 2011 Jan; 134(2):025103. PubMed ID: 21241151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic investigation of the hydration properties of cyclodextrin and its substituted forms.
    Jana M; Bandyopadhyay S
    Langmuir; 2009 Nov; 25(22):13084-91. PubMed ID: 19739659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-frequency vibrational spectrum of water in the hydration layer of a protein: a molecular dynamics simulation study.
    Chakraborty S; Sinha SK; Bandyopadhyay S
    J Phys Chem B; 2007 Dec; 111(48):13626-31. PubMed ID: 17994720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydration properties of α-, β-, and γ-cyclodextrins from molecular dynamics simulations.
    Jana M; Bandyopadhyay S
    J Phys Chem B; 2011 May; 115(19):6347-57. PubMed ID: 21510684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of protein conformational flexibilities and electrostatic interactions on the low-frequency vibrational spectrum of hydration water.
    Pal S; Bandyopadhyay S
    J Phys Chem B; 2013 May; 117(19):5848-56. PubMed ID: 23600990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective interaction of 2,6-di-O-methyl-β-cyclodextrin and Pluronic F127 micelles leading to micellar rupture: a nuclear magnetic resonance study.
    Castiglione F; Valero M; Dreiss CA; Mele A
    J Phys Chem B; 2011 Jul; 115(29):9005-13. PubMed ID: 21667967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics study of β-cyclodextrin-phenylalanine (1:1) inclusion complex in aqueous medium.
    Jana M; Bandyopadhyay S
    J Phys Chem B; 2013 Aug; 117(31):9280-7. PubMed ID: 23899037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of beta-cyclodextrin in aqueous solution at the density-functional tight binding level.
    Heine T; Dos Santos HF; Patchkovskii S; Duarte HA
    J Phys Chem A; 2007 Jul; 111(26):5648-54. PubMed ID: 17402718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local heterogeneous dynamics of water around lysozyme: a computer simulation study.
    Sinha SK; Bandyopadhyay S
    Phys Chem Chem Phys; 2012 Jan; 14(2):899-913. PubMed ID: 22119893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR and Ab initio investigations of the MTBE-water complex.
    Li Z; Singh S
    J Phys Chem A; 2008 Sep; 112(37):8593-9. PubMed ID: 18714958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bond dynamics of histamine monocation in aqueous solution: Car-Parrinello molecular dynamics and vibrational spectroscopy study.
    Stare J; Mavri J; Grdadolnik J; Zidar J; Maksić ZB; Vianello R
    J Phys Chem B; 2011 May; 115(19):5999-6010. PubMed ID: 21517054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can the anomalous aqueous solubility of beta-cyclodextrin be explained by its hydration free energy alone?
    Cai W; Sun T; Shao X; Chipot C
    Phys Chem Chem Phys; 2008 Jun; 10(22):3236-43. PubMed ID: 18500400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency vibrational properties of lysozyme in sugar aqueous solutions: a Raman scattering and molecular dynamics simulation study.
    Lerbret A; Affouard F; Bordat P; Hédoux A; Guinet Y; Descamps M
    J Chem Phys; 2009 Dec; 131(24):245103. PubMed ID: 20059115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational spectroscopic studies and density functional theory calculations of speciation in the CO2-water system.
    Rudolph WW; Fischer D; Irmer G
    Appl Spectrosc; 2006 Feb; 60(2):130-44. PubMed ID: 16542564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration-induced changes of structure and vibrational frequencies of methylphosphocholine studied as a model of biomembrane lipids.
    Mrázková E; Hobza P; Bohl M; Gauger DR; Pohle W
    J Phys Chem B; 2005 Aug; 109(31):15126-34. PubMed ID: 16852914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separation performance and recognition mechanism of mono(6-deoxy-imino)-beta-cyclodextrins chiral stationary phases in high-performance liquid chromatography.
    Zhou ZM; Li X; Chen XP; Fang M; Dong X
    Talanta; 2010 Jul; 82(2):775-84. PubMed ID: 20602969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and vibrational spectra of small water clusters from first principles simulations.
    Kang D; Dai J; Hou Y; Yuan J
    J Chem Phys; 2010 Jul; 133(1):014302. PubMed ID: 20614964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibrational density of states of hydration water at biomolecular sites: hydrophobicity promotes low density amorphous ice behavior.
    Russo D; Teixeira J; Kneller L; Copley JR; Ollivier J; Perticaroli S; Pellegrini E; Gonzalez MA
    J Am Chem Soc; 2011 Apr; 133(13):4882-8. PubMed ID: 21405120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.