These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20704370)

  • 1. Direct voltammetric analysis of DNA modified with enzymatically incorporated 7-deazapurines.
    Pivonková H; Horáková P; Fojtová M; Fojta M
    Anal Chem; 2010 Aug; 82(16):6807-13. PubMed ID: 20704370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free sequence-specific DNA sensing using copper-enhanced anodic stripping of purine bases at boron-doped diamond electrodes.
    Hason S; Pivonkova H; Vetterl V; Fojta M
    Anal Chem; 2008 Apr; 80(7):2391-9. PubMed ID: 18321078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stacked graphene nanofibers for electrochemical oxidation of DNA bases.
    Ambrosi A; Pumera M
    Phys Chem Chem Phys; 2010 Aug; 12(31):8943-7. PubMed ID: 20532301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic liquid-functionalized graphene as modifier for electrochemical and electrocatalytic improvement: comparison of different carbon electrodes.
    Du M; Yang T; Ma S; Zhao C; Jiao K
    Anal Chim Acta; 2011 Apr; 690(2):169-74. PubMed ID: 21435472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward electrochemical resolution of two genes on one electrode: using 7-deaza analogues of guanine and adenine to prepare PCR products with differential redox activity.
    Yang IV; Ropp PA; Thorp HH
    Anal Chem; 2002 Jan; 74(2):347-54. PubMed ID: 11811407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses.
    Li Q; Batchelor-McAuley C; Compton RG
    J Phys Chem B; 2010 Jun; 114(21):7423-8. PubMed ID: 20446746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA sensor for o-dianisidine.
    Jasnowska J; Ligaj M; Stupnicka B; Filipiak M
    Bioelectrochemistry; 2004 Aug; 64(1):85-90. PubMed ID: 15219251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of purine-purine mispairs during misincorporation and extension by Escherichia coli DNA polymerase I.
    Kretulskie AM; Spratt TE
    Biochemistry; 2006 Mar; 45(11):3740-6. PubMed ID: 16533057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids.
    Zanoni MV; Rogers EI; Hardacre C; Compton RG
    Anal Chim Acta; 2010 Feb; 659(1-2):115-21. PubMed ID: 20103112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical studies on the oxidation of guanine and adenine at cyclodextrin modified electrodes.
    Abbaspour A; Noori A
    Analyst; 2008 Dec; 133(12):1664-72. PubMed ID: 19082068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film.
    Wang P; Wu H; Dai Z; Zou X
    Biosens Bioelectron; 2011 Mar; 26(7):3339-45. PubMed ID: 21296567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the solvent accessibility and electron density of adenine: oxidation of 7-deazaadenine in bent DNA and purine doublets.
    Tibodeau JD; Thorp HH
    Inorg Chem; 2004 Jan; 43(2):408-10. PubMed ID: 14731001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the level of DNA modification with cisplatin by catalytic hydrogen evolution at mercury-based electrodes.
    Horáková P; Tesnohlídková L; Havran L; Vidláková P; Pivonková H; Fojta M
    Anal Chem; 2010 Apr; 82(7):2969-76. PubMed ID: 20187631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination.
    Sun W; Li Y; Duan Y; Jiao K
    Biosens Bioelectron; 2008 Dec; 24(4):994-9. PubMed ID: 18799301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of electrochemical biosensor systems for the detection of specific DNA sequences in PCR-amplified nucleic acids related to the catechol-O-methyltransferase Val108/158Met polymorphism based on intrinsic guanine signal.
    Ozkan-Ariksoysal D; Tezcanli B; Kosova B; Ozsoz M
    Anal Chem; 2008 Feb; 80(3):588-96. PubMed ID: 18181582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic oxidation of guanine and DNA on a carbon paste electrode modified by cobalt hexacyanoferrate films.
    Abbaspour A; Mehrgardi MA
    Anal Chem; 2004 Oct; 76(19):5690-6. PubMed ID: 15456287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical response of oligonucleotides on carbon paste electrode.
    Stempkowska I; Ligaj M; Jasnowska J; Langer J; Filipiak M
    Bioelectrochemistry; 2007 May; 70(2):488-94. PubMed ID: 16978928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered mesoporous carbon modified carbon ionic liquid electrode for the electrochemical detection of double-stranded DNA.
    Zhu Z; Li X; Zeng Y; Sun W
    Biosens Bioelectron; 2010 Jun; 25(10):2313-7. PubMed ID: 20382013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrocatalytic oxidation of nucleobases by TiO2 nanobelts.
    Cui J; Sun D; Zhou W; Liu H; Hu P; Ren N; Qin H; Huang Z; Lin J; Ma H
    Phys Chem Chem Phys; 2011 May; 13(20):9232-7. PubMed ID: 21461447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.