These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Modification of the N-terminus of membrane fusion-active peptides blocks the fusion activity. Murata M; Kagiwada S; Hishida R; Ishiguro R; Ohnishi S; Takahashi S Biochem Biophys Res Commun; 1991 Sep; 179(2):1050-5. PubMed ID: 1898385 [TBL] [Abstract][Full Text] [Related]
23. The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion. Epand RF; Macosko JC; Russell CJ; Shin YK; Epand RM J Mol Biol; 1999 Feb; 286(2):489-503. PubMed ID: 9973566 [TBL] [Abstract][Full Text] [Related]
24. Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Maeda T; Kawasaki K; Ohnishi S Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4133-7. PubMed ID: 6945575 [TBL] [Abstract][Full Text] [Related]
25. A polar octapeptide fused to the N-terminal fusion peptide solubilizes the influenza virus HA2 subunit ectodomain. Chen J; Skehel JJ; Wiley DC Biochemistry; 1998 Sep; 37(39):13643-9. PubMed ID: 9753451 [TBL] [Abstract][Full Text] [Related]
26. pH-dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and cationic peptides. Murata M; Takahashi S; Kagiwada S; Suzuki A; Ohnishi S Biochemistry; 1992 Feb; 31(7):1986-92. PubMed ID: 1536841 [TBL] [Abstract][Full Text] [Related]
27. Microscopic observations reveal that fusogenic peptides induce liposome shrinkage prior to membrane fusion. Nomura F; Inaba T; Ishikawa S; Nagata M; Takahashi S; Hotani H; Takiguchi K Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3420-5. PubMed ID: 14988507 [TBL] [Abstract][Full Text] [Related]
28. Relationship between the infectivity of influenza virus and the ability of its fusion peptide to perturb bilayers. Epand RM; Epand RF Biochem Biophys Res Commun; 1994 Aug; 202(3):1420-5. PubMed ID: 8060322 [TBL] [Abstract][Full Text] [Related]
29. Studies of the membrane fusion activities of fusion peptide mutants of influenza virus hemagglutinin. Steinhauer DA; Wharton SA; Skehel JJ; Wiley DC J Virol; 1995 Nov; 69(11):6643-51. PubMed ID: 7474073 [TBL] [Abstract][Full Text] [Related]
30. Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. Tsurudome M; Glück R; Graf R; Falchetto R; Schaller U; Brunner J J Biol Chem; 1992 Oct; 267(28):20225-32. PubMed ID: 1400340 [TBL] [Abstract][Full Text] [Related]
31. Role of the fusion peptide sequence in initial stages of influenza hemagglutinin-induced cell fusion. Schoch C; Blumenthal R J Biol Chem; 1993 May; 268(13):9267-74. PubMed ID: 8387488 [TBL] [Abstract][Full Text] [Related]
32. Full-length trimeric influenza virus hemagglutinin II membrane fusion protein and shorter constructs lacking the fusion peptide or transmembrane domain: Hyperthermostability of the full-length protein and the soluble ectodomain and fusion peptide make significant contributions to fusion of membrane vesicles. Ratnayake PU; Prabodha Ekanayaka EA; Komanduru SS; Weliky DP Protein Expr Purif; 2016 Jan; 117():6-16. PubMed ID: 26297995 [TBL] [Abstract][Full Text] [Related]
33. An endosomolytic Tat peptide produced by incorporation of histidine and cysteine residues as a nonviral vector for DNA transfection. Lo SL; Wang S Biomaterials; 2008 May; 29(15):2408-14. PubMed ID: 18295328 [TBL] [Abstract][Full Text] [Related]
34. Conformation and interaction with the membrane models of the amino-terminal peptide of influenza virus hemagglutinin HA2 at fusion pH. Chang DK; Cheng SF; Trivedi VD Arch Biochem Biophys; 2001 Dec; 396(1):89-98. PubMed ID: 11716466 [TBL] [Abstract][Full Text] [Related]
35. The amino-terminal region of the fusion peptide of influenza virus hemagglutinin HA2 inserts into sodium dodecyl sulfate micelle with residues 16-18 at the aqueous boundary at acidic pH. Oligomerization and the conformational flexibility. Chang DK; Cheng SF; Deo Trivedi V; Yang SH J Biol Chem; 2000 Jun; 275(25):19150-8. PubMed ID: 10764801 [TBL] [Abstract][Full Text] [Related]
36. Configuration of influenza hemagglutinin fusion peptide monomers and oligomers in membranes. Sammalkorpi M; Lazaridis T Biochim Biophys Acta; 2007 Jan; 1768(1):30-8. PubMed ID: 16999933 [TBL] [Abstract][Full Text] [Related]
37. Structure and topology of the influenza virus fusion peptide in lipid bilayers. Lüneberg J; Martin I; Nüssler F; Ruysschaert JM; Herrmann A J Biol Chem; 1995 Nov; 270(46):27606-14. PubMed ID: 7499224 [TBL] [Abstract][Full Text] [Related]
38. Improved cytosolic translocation and tumor-killing activity of Tat-shepherdin conjugates mediated by co-treatment with Tat-fused endosome-disruptive HA2 peptide. Sugita T; Yoshikawa T; Mukai Y; Yamanada N; Imai S; Nagano K; Yoshida Y; Shibata H; Yoshioka Y; Nakagawa S; Kamada H; Tsunoda S; Tsutsumi Y Biochem Biophys Res Commun; 2007 Nov; 363(4):1027-32. PubMed ID: 17923117 [TBL] [Abstract][Full Text] [Related]
39. H+-induced membrane insertion of influenza virus hemagglutinin involves the HA2 amino-terminal fusion peptide but not the coiled coil region. Durrer P; Galli C; Hoenke S; Corti C; Glück R; Vorherr T; Brunner J J Biol Chem; 1996 Jun; 271(23):13417-21. PubMed ID: 8662770 [TBL] [Abstract][Full Text] [Related]
40. Effect of pH on the influenza fusion peptide properties unveiled by constant-pH molecular dynamics simulations combined with experiment. Lousa D; Pinto ART; Campos SRR; Baptista AM; Veiga AS; Castanho MARB; Soares CM Sci Rep; 2020 Nov; 10(1):20082. PubMed ID: 33208852 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]