BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 20705185)

  • 1. Stomatal patterning and development.
    Dong J; Bergmann DC
    Curr Top Dev Biol; 2010; 91():267-97. PubMed ID: 20705185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Take a deep breath: peptide signalling in stomatal patterning and differentiation.
    Richardson LG; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5243-51. PubMed ID: 23997204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stomatal development in Arabidopsis and grasses: differences and commonalities.
    Serna L
    Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mix-and-match: ligand-receptor pairs in stomatal development and beyond.
    Torii KU
    Trends Plant Sci; 2012 Dec; 17(12):711-9. PubMed ID: 22819466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stomatal patterning and differentiation by synergistic interactions of receptor kinases.
    Shpak ED; McAbee JM; Pillitteri LJ; Torii KU
    Science; 2005 Jul; 309(5732):290-3. PubMed ID: 16002616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell fate transitions during stomatal development.
    Serna L
    Bioessays; 2009 Aug; 31(8):865-73. PubMed ID: 19565615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant development: spacing out stomatal pores.
    Ingram GC
    Curr Biol; 2005 Sep; 15(17):R663-5. PubMed ID: 16139197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS.
    Lampard GR; Macalister CA; Bergmann DC
    Science; 2008 Nov; 322(5904):1113-6. PubMed ID: 19008449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular control of stomatal development.
    Zoulias N; Harrison EL; Casson SA; Gray JE
    Biochem J; 2018 Jan; 475(2):441-454. PubMed ID: 29386377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal density is controlled by a mesophyll-derived signaling molecule.
    Kondo T; Kajita R; Miyazaki A; Hokoyama M; Nakamura-Miura T; Mizuno S; Masuda Y; Irie K; Tanaka Y; Takada S; Kakimoto T; Sakagami Y
    Plant Cell Physiol; 2010 Jan; 51(1):1-8. PubMed ID: 20007289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.
    Pillitteri LJ; Bogenschutz NL; Torii KU
    Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The BASL polarity protein controls a MAPK signaling feedback loop in asymmetric cell division.
    Zhang Y; Wang P; Shao W; Zhu JK; Dong J
    Dev Cell; 2015 Apr; 33(2):136-49. PubMed ID: 25843888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new loss-of-function allele 28y reveals a role of ARGONAUTE1 in limiting asymmetric division of stomatal lineage ground cell.
    Yang K; Jiang M; Le J
    J Integr Plant Biol; 2014 Jun; 56(6):539-49. PubMed ID: 24386951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage.
    MacAlister CA; Ohashi-Ito K; Bergmann DC
    Nature; 2007 Feb; 445(7127):537-40. PubMed ID: 17183265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal development and pattern controlled by a MAPKK kinase.
    Bergmann DC; Lukowitz W; Somerville CR
    Science; 2004 Jun; 304(5676):1494-7. PubMed ID: 15178800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PAN1: a receptor-like protein that promotes polarization of an asymmetric cell division in maize.
    Cartwright HN; Humphries JA; Smith LG
    Science; 2009 Jan; 323(5914):649-51. PubMed ID: 19179535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves.
    Hara K; Yokoo T; Kajita R; Onishi T; Yahata S; Peterson KM; Torii KU; Kakimoto T
    Plant Cell Physiol; 2009 Jun; 50(6):1019-31. PubMed ID: 19435754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling.
    Qi X; Han SK; Dang JH; Garrick JM; Ito M; Hofstetter AK; Torii KU
    Elife; 2017 Mar; 6():. PubMed ID: 28266915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level.
    Jewaria PK; Hara T; Tanaka H; Kondo T; Betsuyaku S; Sawa S; Sakagami Y; Aimoto S; Kakimoto T
    Plant Cell Physiol; 2013 Aug; 54(8):1253-62. PubMed ID: 23686240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional specification of stomatal production by the putative ligand CHALLAH.
    Abrash EB; Bergmann DC
    Development; 2010 Feb; 137(3):447-55. PubMed ID: 20056678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.