BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 20705242)

  • 1. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine.
    Chiba S; Itoh Y; Sekine S; Yokoyama S
    Mol Cell; 2010 Aug; 39(3):410-20. PubMed ID: 20705242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase.
    Sherrer RL; Ho JM; Söll D
    Nucleic Acids Res; 2008 Apr; 36(6):1871-80. PubMed ID: 18267971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminal domain of archaeal O-phosphoseryl-tRNA kinase displays large-scale motion to bind the 7-bp D-stem of archaeal tRNA(Sec).
    Sherrer RL; Araiso Y; Aldag C; Ishitani R; Ho JM; Söll D; Nureki O
    Nucleic Acids Res; 2011 Feb; 39(3):1034-41. PubMed ID: 20870747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional investigation of a putative archaeal selenocysteine synthase.
    Kaiser JT; Gromadski K; Rother M; Engelhardt H; Rodnina MV; Wahl MC
    Biochemistry; 2005 Oct; 44(40):13315-27. PubMed ID: 16201757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).
    Amberg R; Mizutani T; Wu XQ; Gross HJ
    J Mol Biol; 1996 Oct; 263(1):8-19. PubMed ID: 8890909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser).
    Baron C; Westhof E; Böck A; Giegé R
    J Mol Biol; 1993 May; 231(2):274-92. PubMed ID: 8510147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterisation of the selenocysteine-specific translation factor SelB from the archaeon Methanococcus jannaschii.
    Rother M; Wilting R; Commans S; Böck A
    J Mol Biol; 2000 Jun; 299(2):351-8. PubMed ID: 10860743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation.
    Sherrer RL; O'Donoghue P; Söll D
    Nucleic Acids Res; 2008 Mar; 36(4):1247-59. PubMed ID: 18174226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.
    Yuan J; Palioura S; Salazar JC; Su D; O'Donoghue P; Hohn MJ; Cardoso AM; Whitman WB; Söll D
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):18923-7. PubMed ID: 17142313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.
    Carlson BA; Xu XM; Kryukov GV; Rao M; Berry MJ; Gladyshev VN; Hatfield DL
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12848-53. PubMed ID: 15317934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of selenocysteine biosynthesis in the archaeon Methanococcus maripaludis.
    Hohn MJ; Palioura S; Su D; Yuan J; Söll D
    Mol Microbiol; 2011 Jul; 81(1):249-58. PubMed ID: 21564332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into the first step of RNA-dependent cysteine biosynthesis in archaea.
    Fukunaga R; Yokoyama S
    Nat Struct Mol Biol; 2007 Apr; 14(4):272-9. PubMed ID: 17351629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of a tRNA-dependent kinase essential for selenocysteine decoding.
    Araiso Y; Sherrer RL; Ishitani R; Ho JM; Söll D; Nureki O
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16215-20. PubMed ID: 19805283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM; Puppala AK; Lee JW; Lee H; Simonović M
    RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The canonical pathway for selenocysteine insertion is dispensable in Trypanosomes.
    Aeby E; Palioura S; Pusnik M; Marazzi J; Lieberman A; Ullu E; Söll D; Schneider A
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5088-92. PubMed ID: 19279205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural compensation in an archaeal selenocysteine transfer RNA.
    Ioudovitch A; Steinberg SV
    J Mol Biol; 1999 Jul; 290(2):365-71. PubMed ID: 10390336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea.
    Xu XM; Carlson BA; Zhang Y; Mix H; Kryukov GV; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL
    Biol Trace Elem Res; 2007 Dec; 119(3):234-41. PubMed ID: 17916946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm.
    Ohama T; Yang DC; Hatfield DL
    Arch Biochem Biophys; 1994 Dec; 315(2):293-301. PubMed ID: 7986071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tertiary structure of bacterial selenocysteine tRNA.
    Itoh Y; Sekine S; Suetsugu S; Yokoyama S
    Nucleic Acids Res; 2013 Jul; 41(13):6729-38. PubMed ID: 23649835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of selenocysteine on its tRNA in eukaryotes.
    Xu XM; Carlson BA; Mix H; Zhang Y; Saira K; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL
    PLoS Biol; 2007 Jan; 5(1):e4. PubMed ID: 17194211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.