These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20705992)

  • 1. Homemade bone charcoal adsorbent for defluoridation of groundwater in Thailand.
    Smittakorn S; Jirawongboonrod N; Mongkolnchai-arunya S; Durnford D
    J Water Health; 2010 Dec; 8(4):826-36. PubMed ID: 20705992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of endotoxin from aqueous solution using bone char.
    Rezaee A; Ghanizadeh G; Behzadiyannejad G; Yazdanbakhsh A; Siyadat SD
    Bull Environ Contam Toxicol; 2009 Jun; 82(6):732-7. PubMed ID: 19280089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defluoridation of groundwater using brick powder as an adsorbent.
    Yadav AK; Kaushik CP; Haritash AK; Kansal A; Rani N
    J Hazard Mater; 2006 Feb; 128(2-3):289-93. PubMed ID: 16233952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluoride sorption characteristics of different grades of bone charcoal, based on batch tests.
    Mwaniki DL
    J Dent Res; 1992 Jun; 71(6):1310-5. PubMed ID: 1613181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption equilibria of metal ions on bone char.
    Ko DC; Cheung CW; Choy KK; Porter JF; McKay G
    Chemosphere; 2004 Jan; 54(3):273-81. PubMed ID: 14575739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption kinetics of fluoride in drinking water by bone charcoal columns.
    Mwaniki D; Nagelkerke N
    Front Med Biol Eng; 1990; 2(4):303-8. PubMed ID: 2081153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on fluoride removal using adsorption process.
    Tembhurkar AR; Dongre S
    J Environ Sci Eng; 2006 Jul; 48(3):151-6. PubMed ID: 17915776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The batch study of Sr(2+) sorption by bone char.
    Smiciklas I; Dimovic S; Sljivic M; Plecas I
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(2):210-7. PubMed ID: 18172814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of arsenic(V) adsorption on bone char from aqueous solution.
    Chen YN; Chai LY; Shu YD
    J Hazard Mater; 2008 Dec; 160(1):168-72. PubMed ID: 18417278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent--bamboo charcoal.
    Wang FY; Wang H; Ma JW
    J Hazard Mater; 2010 May; 177(1-3):300-6. PubMed ID: 20036463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scavenging of Ni(II) metal ions by adsorption on PAC and babhul bark.
    Patil SJ; Bhole AG; Natarajan GS
    J Environ Sci Eng; 2006 Jul; 48(3):203-8. PubMed ID: 17915785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.
    Boudrahem F; Aissani-Benissad F; Aït-Amar H
    J Environ Manage; 2009 Jul; 90(10):3031-9. PubMed ID: 19447542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics.
    Rodríguez A; García J; Ovejero G; Mestanza M
    J Hazard Mater; 2009 Dec; 172(2-3):1311-20. PubMed ID: 19726130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of regenerated bone char for fluoride removal in drinking water: a case study in Tanzania.
    Kaseva ME
    J Water Health; 2006 Mar; 4(1):139-47. PubMed ID: 16604845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced fluoride sorption by mechanochemically activated kaolinites.
    Meenakshi S; Sundaram CS; Sukumar R
    J Hazard Mater; 2008 May; 153(1-2):164-72. PubMed ID: 17897780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical considerations, column studies and natural organic material competition for fluoride removal with bone char and aluminum amended materials in the Main Ethiopian Rift Valley.
    Brunson LR; Sabatini DA
    Sci Total Environ; 2014 Aug; 488-489():580-7. PubMed ID: 24393599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characteristics and comparative study of a new drinking-water defluoridation adsorbent Bio-F].
    Zhu C; Zhao LY; Yuan H; Yang HY; Li A; Wang P; Yang S
    Huan Jing Ke Xue; 2009 Apr; 30(4):1036-43. PubMed ID: 19545002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on defluoridation of water by tamarind seed, an unconventional biosorbent.
    Murugan M; Subramanian E
    J Water Health; 2006 Dec; 4(4):453-61. PubMed ID: 17176816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dye adsorption onto char from bamboo.
    Mui EL; Cheung WH; Valix M; McKay G
    J Hazard Mater; 2010 May; 177(1-3):1001-5. PubMed ID: 20097002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.