These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 20706020)
21. Determining the source of fecal contamination in recreational waters. Meyer KJ; Appletoft CM; Schwemm AK; Uzoigwe JC; Brown EJ J Environ Health; 2005; 68(1):25-30. PubMed ID: 16121484 [TBL] [Abstract][Full Text] [Related]
22. Optimization and validation of rep-PCR genotypic libraries for microbial source tracking of environmental Escherichia coli isolates. Lyautey E; Lu Z; Lapen DR; Berkers TE; Edge TA; Topp E Can J Microbiol; 2010 Jan; 56(1):8-17. PubMed ID: 20130688 [TBL] [Abstract][Full Text] [Related]
23. Detection of genetic markers of fecal indicator bacteria in Lake Michigan and determination of their relationship to Escherichia coli densities using standard microbiological methods. Bower PA; Scopel CO; Jensen ET; Depas MM; McLellan SL Appl Environ Microbiol; 2005 Dec; 71(12):8305-13. PubMed ID: 16332817 [TBL] [Abstract][Full Text] [Related]
24. Nowcast modeling of Escherichia coli concentrations at multiple urban beaches of southern Lake Michigan. Nevers MB; Whitman RL Water Res; 2005 Dec; 39(20):5250-60. PubMed ID: 16310242 [TBL] [Abstract][Full Text] [Related]
25. Faecal pollution source identification in an urbanizing catchment using antibiotic resistance profiling, discriminant analysis and partial least squares regression. Carroll SP; Dawes L; Hargreaves M; Goonetilleke A Water Res; 2009 Mar; 43(5):1237-46. PubMed ID: 19168199 [TBL] [Abstract][Full Text] [Related]
26. Interaction and influence of two creeks on Escherichia coli concentrations of nearby beaches: exploration of predictability and mechanisms. Nevers MB; Whitman RL; Frick WE; Ge Z J Environ Qual; 2007; 36(5):1338-45. PubMed ID: 17636296 [TBL] [Abstract][Full Text] [Related]
27. Geographic relatedness and predictability of Escherichia coli along a peninsular beach complex of Lake Michigan. Nevers MB; Shively DA; Kleinheinz GT; McDermott CM; Schuster W; Chomeau V; Whitman RL J Environ Qual; 2009; 38(6):2357-64. PubMed ID: 19875791 [TBL] [Abstract][Full Text] [Related]
28. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario. Lee DY; Lee H; Trevors JT; Weir SC; Thomas JL; Habash M Water Res; 2014 Apr; 53():123-31. PubMed ID: 24509346 [TBL] [Abstract][Full Text] [Related]
29. Estimation of pathogen concentrations in a drinking water source using hydrodynamic modelling and microbial source tracking. Sokolova E; Aström J; Pettersson TJ; Bergstedt O; Hermansson M J Water Health; 2012 Sep; 10(3):358-70. PubMed ID: 22960480 [TBL] [Abstract][Full Text] [Related]
30. Fidelity of bacterial source tracking: Escherichia coli vs Enterococcus spp and minimizing assignment of isolates from nonlibrary sources. Hassan WM; Ellender RD; Wang SY J Appl Microbiol; 2007 Feb; 102(2):591-8. PubMed ID: 17241366 [TBL] [Abstract][Full Text] [Related]
31. Population structure of Cladophora-borne Escherichia coli in nearshore water of Lake Michigan. Byappanahalli MN; Whitman RL; Shively DA; Ferguson J; Ishii S; Sadowsky MJ Water Res; 2007 Aug; 41(16):3649-54. PubMed ID: 17451778 [TBL] [Abstract][Full Text] [Related]
32. Sourcing faecal pollution: a combination of library-dependent and library-independent methods to identify human faecal pollution in non-sewered catchments. Ahmed W; Stewart J; Gardner T; Powell D; Brooks P; Sullivan D; Tindale N Water Res; 2007 Aug; 41(16):3771-9. PubMed ID: 17482658 [TBL] [Abstract][Full Text] [Related]
33. Direct comparison of four bacterial source tracking methods and use of composite data sets. Casarez EA; Pillai SD; Mott JB; Vargas M; Dean KE; Di Giovanni GD J Appl Microbiol; 2007 Aug; 103(2):350-64. PubMed ID: 17650195 [TBL] [Abstract][Full Text] [Related]
34. Comparison of the occurrence and survival of fecal indicator bacteria in recreational sand between urban beach, playground and sandbox settings in Toronto, Ontario. Staley ZR; Robinson C; Edge TA Sci Total Environ; 2016 Jan; 541():520-527. PubMed ID: 26432162 [TBL] [Abstract][Full Text] [Related]
35. Tracking biological pollution sources using PCR-DGGE technology at Ta-An Beach. Shen SM; Hwang HY; Fang HY Water Sci Technol; 2010; 62(10):2235-45. PubMed ID: 21076208 [TBL] [Abstract][Full Text] [Related]
36. Microbiological water quality along the Danube River: integrating data from two whole-river surveys and a transnational monitoring network. Kirschner AK; Kavka GG; Velimirov B; Mach RL; Sommer R; Farnleitner AH Water Res; 2009 Aug; 43(15):3673-84. PubMed ID: 19552934 [TBL] [Abstract][Full Text] [Related]
37. Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. Somarelli JA; Makarewicz JC; Sia R; Simon R J Environ Manage; 2007 Jan; 82(1):60-5. PubMed ID: 16551490 [TBL] [Abstract][Full Text] [Related]
38. Semi-quantitative evaluation of fecal contamination potential by human and ruminant sources using multiple lines of evidence. Stoeckel DM; Stelzer EA; Stogner RW; Mau DP Water Res; 2011 May; 45(10):3225-44. PubMed ID: 21513966 [TBL] [Abstract][Full Text] [Related]
39. Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France. Gourmelon M; Caprais MP; Mieszkin S; Marti R; Wéry N; Jardé E; Derrien M; Jadas-Hécart A; Communal PY; Jaffrezic A; Pourcher AM Water Res; 2010 Sep; 44(16):4812-24. PubMed ID: 20709349 [TBL] [Abstract][Full Text] [Related]
40. Influence of sampling depth on Escherichia coli concentrations in beach monitoring. Kleinheinz GT; McDermott CM; Leewis MC; Englebert E Water Res; 2006 Dec; 40(20):3831-7. PubMed ID: 17049581 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]