These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2070614)

  • 21. Numerical analysis of an enhanced cooling rate cryopreservation process in a biological tissue.
    Sukumar S; Kar SP
    J Therm Biol; 2019 Apr; 81():146-153. PubMed ID: 30975412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The importance of the range of cooling rates within a Nagington and Greaves plug when freezing lymphocytes.
    Armitage WJ
    J Immunol Methods; 1980; 34(1):49-53. PubMed ID: 6999087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.
    Santos MV; Sansinena M; Chirife J; Zaritzky N
    Cryobiology; 2014 Dec; 69(3):488-95. PubMed ID: 25445573
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Process Analytical Technology in Freeze-Drying: Detection of the Secondary Solute + Water Crystallization with Heat Flux Sensors.
    Wang Q; Shalaev E
    AAPS PharmSciTech; 2018 Apr; 19(3):1477-1482. PubMed ID: 29101534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low-temperature electron microscopy for the study of polysaccharide ultrastructures in hydrogels. I. Theoretical and technical considerations.
    Serp D; Mueller M; Von Stockar U; Marison IW
    Biotechnol Bioeng; 2002 Aug; 79(3):243-52. PubMed ID: 12115412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new approach for freezing of aqueous solutions under active control of the nucleation temperature.
    Petersen A; Schneider H; Rau G; Glasmacher B
    Cryobiology; 2006 Oct; 53(2):248-57. PubMed ID: 16887112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Function of lymphocytes and macrophages after cryopreservation by procedures for pancreatic islets: potential for reducing tissue immunogenicity.
    Taylor MJ; Bank HL
    Cryobiology; 1988 Feb; 25(1):1-17. PubMed ID: 3280245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct cell injury associated with eutectic crystallization during freezing.
    Han B; Bischof JC
    Cryobiology; 2004 Feb; 48(1):8-21. PubMed ID: 14969678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water transport and estimated transmembrane potential during freezing of mouse oocytes.
    Toner M; Cravalho EG; Armant DR
    J Membr Biol; 1990 May; 115(3):261-72. PubMed ID: 2374161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical problems with the vitrification of large biological systems.
    Fahy GM; Saur J; Williams RJ
    Cryobiology; 1990 Oct; 27(5):492-510. PubMed ID: 2249453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical Estimation of the Optimum Cooling Rate of a Cell Suspension at Linear Freezing Modes Based on a Two Factor Theory of Cryodamage.
    Gordiyenko OI; Kovalenko SY; Kovalenko IF; Ogurtsova VV; Todrin AF
    Cryo Letters; 2018; 39(6):380-385. PubMed ID: 30963155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of extracellular ice and cryoprotective agents on the water permeability parameters of human sperm plasma membrane during freezing.
    Devireddy RV; Swanlund DJ; Roberts KP; Pryor JL; Bischof JC
    Hum Reprod; 2000 May; 15(5):1125-35. PubMed ID: 10783365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On crystal size and cooling rate.
    Bald WB
    J Microsc; 1986 Jul; 143(Pt 1):89-102. PubMed ID: 3531522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of X-ray tomography to map crystalline and amorphous phases in frozen biomaterials.
    Bischof JC; Mahr B; Choi JH; Behling M; Mewes D
    Ann Biomed Eng; 2007 Feb; 35(2):292-304. PubMed ID: 17136446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redefining cooling rate in terms of ice front velocity and thermal gradient: first evidence of relevance to freezing injury of lymphocytes.
    Beckmann J; Körber C; Rau G; Hubel A; Cravalho EG
    Cryobiology; 1990 Jun; 27(3):279-87. PubMed ID: 2379414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analysis of the probability of intracellular ice formation during freezing of isolated protoplasts.
    Pitt RE; Steponkus PL
    Cryobiology; 1989 Feb; 26(1):44-63. PubMed ID: 2924592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiple glass transitions and freezing events of aqueous citric acid.
    Bogdan A; Molina MJ; Tenhu H; Loerting T
    J Phys Chem A; 2015 May; 119(19):4515-23. PubMed ID: 25482069
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled freezing of nonideal solutions with application to cryosurgical processes.
    Budman HM; Dayan J; Shitzer A
    J Biomech Eng; 1991 Nov; 113(4):430-7. PubMed ID: 1762441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology of protein particles produced by spray freezing of concentrated solutions.
    Engstrom JD; Simpson DT; Lai ES; Williams RO; Johnston KP
    Eur J Pharm Biopharm; 2007 Feb; 65(2):149-62. PubMed ID: 17010582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating cryoinjury using simulations and experiments. 1: TF-1 cells during two-step freezing (rapid cooling interrupted with a hold time).
    Ross-Rodriguez LU; Elliott JA; McGann LE
    Cryobiology; 2010 Aug; 61(1):38-45. PubMed ID: 20471379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.