These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20706335)

  • 1. Infrared continuum water vapor absorption coefficients derived from satellite data.
    Barton IJ
    Appl Opt; 1991 Jul; 30(21):2929-34. PubMed ID: 20706335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water vapor absorption coefficients in the 8-13-microm spectral region: a critical review.
    Grant WB
    Appl Opt; 1990 Feb; 29(4):451-62. PubMed ID: 20556130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared water vapor continuum absorption at atmospheric temperatures.
    Cormier JG; Hodges JT; Drummond JR
    J Chem Phys; 2005 Mar; 122(11):114309. PubMed ID: 15836217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CO(2) DIAL measurements of water vapor.
    Grant WB; Margolis JS; Brothers AM; Tratt DM
    Appl Opt; 1987 Aug; 26(15):3033-42. PubMed ID: 20490006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of infrared absorption by the water vapor continuum near 1200 cm(-1).
    Montgomery GP
    Appl Opt; 1978 Aug; 17(15):2299-303. PubMed ID: 20203777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared continuum absorption by atmospheric water vapor in the 8-12-microm window.
    Roberts RE; Selby JE; Biberman LM
    Appl Opt; 1976 Sep; 15(9):2085-90. PubMed ID: 20165342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite observations of atmospheric water vapor.
    Wark DQ; Lienesch JH; Weinreb MP
    Appl Opt; 1974 Mar; 13(3):507-11. PubMed ID: 20126017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the FASCODE model and its H(2)O continuum based on long-path atmospheric transmission measurements in the 4.5-11.5-µm region.
    Thériault JM; Roney PL; -Germain DS; Revercomb HE; Knuteson RO; Smith WL
    Appl Opt; 1994 Jan; 33(3):323-33. PubMed ID: 20862021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines.
    Ma Q; Tipping RH; Leforestier C
    J Chem Phys; 2008 Mar; 128(12):124313. PubMed ID: 18376925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airborne and satellite remote sensing of the mid-infrared water vapour continuum.
    Newman SM; Green PD; Ptashnik IV; Gardiner TD; Coleman MD; McPheat RA; Smith KM
    Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2611-36. PubMed ID: 22547235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window.
    Ventrillard I; Romanini D; Mondelain D; Campargue A
    J Chem Phys; 2015 Oct; 143(13):134304. PubMed ID: 26450311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure dependence of the water vapor continuum absorption in the 3.5-4.0-microm region.
    Watkins WR; White KO; Bower LR; Sojka BZ
    Appl Opt; 1979 Apr; 18(8):1149-60. PubMed ID: 20208901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Water Vapor Spectrum in the Region 8600-15 000 cm(-1): Experimental and Theoretical Studies for a New Spectral Line Database.
    Schermaul R; Learner RC; Newnham DA; Williams RG; Ballard J; Zobov NF; Belmiloud D; Tennyson J
    J Mol Spectrosc; 2001 Jul; 208(1):32-42. PubMed ID: 11437550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements.
    Ptashnik IV; McPheat RA; Shine KP; Smith KM; Williams RG
    Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2557-77. PubMed ID: 22547232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption.
    Leforestier C; Tipping RH; Ma Q
    J Chem Phys; 2010 Apr; 132(16):164302. PubMed ID: 20441270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface and bulk absorption characteristics of chemically vapor-deposited zinc selenide in the infrared.
    Klein CA; Miller RP; Stierwalt DL
    Appl Opt; 1994 Jul; 33(19):4304-13. PubMed ID: 20935788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass spectrometry of ion-induced water clusters: an explanation of the infrared continuum absorption.
    Carlon HR; Harden CS
    Appl Opt; 1980 Jun; 19(11):1776-86. PubMed ID: 20221124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory intercomparison of the ozone absorption coefficients in the mid-infrared (10 microm) and ultraviolet (300-350 nm) spectral regions.
    Picquet-Varrault B; Orphal J; Doussin JF; Carlier P; Flaud JM
    J Phys Chem A; 2005 Feb; 109(6):1008-14. PubMed ID: 16833407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water vapor continuum absorption in the 3.5-4.0-microm region.
    White KO; Watkins WR; Bruce CW; Meredith RE; Smith FG
    Appl Opt; 1978 Sep; 17(17):2711-20. PubMed ID: 20203855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and recent evaluation of the MT_CKD model of continuum absorption.
    Mlawer EJ; Payne VH; Moncet JL; Delamere JS; Alvarado MJ; Tobin DC
    Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2520-56. PubMed ID: 22547231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.