These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20706412)

  • 1. Scattering of white light from levitated oblate water drops near rainbows and other diffraction catastrophes.
    Simpson HJ; Marston PL
    Appl Opt; 1991 Aug; 30(24):3468-73. PubMed ID: 20706412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E(6) diffraction catastrophe of the primary rainbow of oblate water drops: observations with white-light and laser illumination.
    Kaduchak G; Marston PL; Simpson HJ
    Appl Opt; 1994 Jul; 33(21):4691-6. PubMed ID: 20935839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperbolic umbilic and E(6) diffraction catastrophes associated with the secondary rainbow of oblate water drops: observations with laser illumination.
    Kaduchak G; Marston PL
    Appl Opt; 1994 Jul; 33(21):4697-701. PubMed ID: 20935840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opening rate of the transverse cusp diffraction catastrophe in light scattered by oblate spheroidal drops.
    Dean CE; Marston PL
    Appl Opt; 1991 Aug; 30(24):3443-51. PubMed ID: 20706409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized rainbows and unfolded glories of oblate drops: organization for multiple internal reflections and extension of cusps into Alexander's dark band.
    Marston PL; Kaduchak G
    Appl Opt; 1994 Jul; 33(21):4702-13. PubMed ID: 20935841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cusp diffraction catastrophe from spheroids: generalized rainbows and inverse scattering.
    Marston PL
    Opt Lett; 1985 Dec; 10(12):588-90. PubMed ID: 19730494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of the optical caustics associated with the primary rainbow for oblate spheroidal drops illuminated by a Gaussian beam.
    Wang J; Yu H; Shen J; Yang B; Tropea C
    Opt Express; 2021 Jan; 29(1):377-384. PubMed ID: 33362123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical caustics observed in light scattered by an oblate spheroid.
    Lock JA; Xu F
    Appl Opt; 2010 Mar; 49(8):1288-304. PubMed ID: 20220884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of the vectorial complex ray model on the inter-caustics scattering of oblate droplets.
    Onofri FR; Ren KF; Sentis M; Gaubert Q; Pelcé C
    Opt Express; 2015 Jun; 23(12):15768-73. PubMed ID: 26193555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized tertiary rainbow of slightly oblate drops: observations with laser illumination.
    Langley DS; Marston PL
    Appl Opt; 1998 Mar; 37(9):1520-6. PubMed ID: 18268743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model for computing optical caustic partitions for the primary rainbow from tilted spheriodal drops.
    Yu H; Shen J; Tropea C; Xu F
    Opt Lett; 2019 Feb; 44(4):823-826. PubMed ID: 30767996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opening rate of the transverse cusp diffraction catastrophe in light scattered by oblate spheroidal drops: errata.
    Dean CE; Marston PL
    Appl Opt; 1993 Apr; 32(12):2163. PubMed ID: 20820362
    [No Abstract]   [Full Text] [Related]  

  • 13. Simulation of optical caustics associated with the secondary rainbow of oblate droplets.
    Yu H; Xu F; Tropea C
    Opt Lett; 2013 Nov; 38(21):4469-72. PubMed ID: 24177121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized rainbow patterns of oblate drops simulated by a ray model in three dimensions.
    Duan Q; Onofri FRA; Han X; Ren KF
    Opt Lett; 2021 Sep; 46(18):4585-4588. PubMed ID: 34525053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of optical caustics associated with the tertiary rainbow of oblate droplets.
    Guan L; Yu H; Shen J; Tropea C
    Appl Opt; 2016 Aug; 55(23):6447-51. PubMed ID: 27534493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rainbows by elliptically deformed drops. I. Möbius shift for high-order rainbows.
    Lock JA; Können GP
    Appl Opt; 2017 Jul; 56(19):G88-G97. PubMed ID: 29047474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rainbow phenomena and the detection of nonsphericity in drops.
    Marston PL
    Appl Opt; 1980 Mar; 19(5):680-5. PubMed ID: 20220917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flashes of light below the dripping faucet: an optical signal from capillary oscillations of water drops.
    Timusk T
    Appl Opt; 2009 Feb; 48(6):1212-7. PubMed ID: 23567583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional graphic physically based simulator of rainbows together with the background scene.
    Jung MR
    Appl Opt; 2015 Mar; 54(8):1926-35. PubMed ID: 25968367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light scattering from sessile water drops and raindrop-shaped glass beads as a validation tool for rainbow simulations.
    Haußmann A
    Appl Opt; 2017 Jul; 56(19):G136-G144. PubMed ID: 29047479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.