These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 20706439)
1. Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography. Shiono T; Ogawa H Appl Opt; 1991 Sep; 30(25):3643-9. PubMed ID: 20706439 [TBL] [Abstract][Full Text] [Related]
2. Reflection aspherical microlenses for planar optics fabricated by electron-beam lithography. Shiono T; Ogawa H Opt Lett; 1992 Apr; 17(8):565-7. PubMed ID: 19794559 [TBL] [Abstract][Full Text] [Related]
3. Reflection micro-Fresnel lenses and their use in an integrated focus sensor. Shiono T; Kitagawa M; Setsune K; Mitsuyu T Appl Opt; 1989 Aug; 28(16):3434-42. PubMed ID: 20555718 [TBL] [Abstract][Full Text] [Related]
8. Blazed reflection micro-Fresnel lenses fabricated by electron-beam writing and dry development. Shiono T; Setune K Opt Lett; 1990 Jan; 15(1):84-6. PubMed ID: 19759719 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of a focusing grating mirror by electron beam lithography. Hori Y; Sogawa F; Asakure H; Kato M; Serizawa H Appl Opt; 1990 Jun; 29(17):2522-6. PubMed ID: 20567287 [TBL] [Abstract][Full Text] [Related]
10. Simple optical wavelength-division multiplexer component that uses the lateral focusing scheme of a planar microlens. Intani D; Baba T; Iga K Appl Opt; 1994 Jun; 33(16):3405-8. PubMed ID: 20885719 [TBL] [Abstract][Full Text] [Related]
11. Wavelength-independent integrated focus sensor using a reflection twin micro-Fresnel lens. Shiono T; Setsune K Appl Opt; 1989 Dec; 28(23):5115-21. PubMed ID: 20556009 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and simulation of diffractive optical elements with superimposed antireflection subwavelength gratings. Nikolajeff F; Löfving B; Johansson M; Bengtsson J; Hård S; Heine C Appl Opt; 2000 Sep; 39(26):4842-6. PubMed ID: 18350077 [TBL] [Abstract][Full Text] [Related]
13. Broadband Metallic Planar Microlenses in an Array: the Focusing Coupling Effect. Yu Y; Wang P; Zhu Y; Diao J Nanoscale Res Lett; 2016 Dec; 11(1):109. PubMed ID: 26922796 [TBL] [Abstract][Full Text] [Related]
14. Diffractive microlenses replicated in fused silica for excimer laser-beam homogenizing. Nikolajeff F; Hård S; Curtis B Appl Opt; 1997 Nov; 36(32):8481-9. PubMed ID: 18264393 [TBL] [Abstract][Full Text] [Related]
15. Rapid fabrication of diffractive optical elements by use of image-based excimer laser ablation. Wang X; Leger JR; Rediker RH Appl Opt; 1997 Jul; 36(20):4660-5. PubMed ID: 18259262 [TBL] [Abstract][Full Text] [Related]
16. Planar microlens relay optics utilizing lateral focusing. Intani D; Baba T; Iga K Appl Opt; 1992 Sep; 31(25):5255-8. PubMed ID: 20733703 [TBL] [Abstract][Full Text] [Related]
17. Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography. Ekberg M; Nikolajeff F; Larsson M; Hård S Appl Opt; 1994 Jan; 33(1):103-7. PubMed ID: 20861995 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of holographic microlenses using a deep UV lithographed zone plate. Ming H; Wu Y; Xie J; Nakajima T Appl Opt; 1990 Dec; 29(34):5111-4. PubMed ID: 20577520 [TBL] [Abstract][Full Text] [Related]
19. Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. Karlsson M; Nikolajeff F Opt Express; 2003 Mar; 11(5):502-7. PubMed ID: 19461757 [TBL] [Abstract][Full Text] [Related]
20. Analysis and optimization of fabrication of continuous-relief diffractive optical elements. Hessler T; Rossi M; Kunz RE; Gale MT Appl Opt; 1998 Jul; 37(19):4069-79. PubMed ID: 18285842 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]