BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20706849)

  • 1. Masting in ponderosa pine: comparisons of pollen and seed over space and time.
    Mooney KA; Linhart YB; Snyder MA
    Oecologia; 2011 Mar; 165(3):651-61. PubMed ID: 20706849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate Change Strengthens Selection for Mast Seeding in European Beech.
    Bogdziewicz M; Kelly D; Tanentzap AJ; Thomas PA; Lageard JGA; Hacket-Pain A
    Curr Biol; 2020 Sep; 30(17):3477-3483.e2. PubMed ID: 32649915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Masting promotes individual- and population-level reproduction by increasing pollination efficiency.
    Moreira X; Abdala-Roberts L; Linhart YB; Mooney KA
    Ecology; 2014 Apr; 95(4):801-7. PubMed ID: 24933801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Masting in wind-pollinated trees: system-specific roles of weather and pollination dynamics in driving seed production.
    Bogdziewicz M; Szymkowiak J; Kasprzyk I; Grewling Ł; Borowski Z; Borycka K; Kantorowicz W; Myszkowska D; Piotrowicz K; Ziemianin M; Pesendorfer MB
    Ecology; 2017 Oct; 98(10):2615-2625. PubMed ID: 28722149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of ENSO and the North American monsoon on mast seeding in two Rocky Mountain conifer species.
    Wion AP; Pearse IS; Rodman KC; Veblen TT; Redmond MD
    Philos Trans R Soc Lond B Biol Sci; 2021 Dec; 376(1839):20200378. PubMed ID: 34657459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Masting behaviour in a Mediterranean pine tree alters seed predator selection on reproductive output.
    Moreira X; Abdala-Roberts L; Zas R; Merlo E; Lombardero MJ; Sampedro L; Mooney KA
    Plant Biol (Stuttg); 2016 Nov; 18(6):973-980. PubMed ID: 27500664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased aridity is associated with stronger tradeoffs in ponderosa pine vital functions.
    Gonzalez AD; Pearse IS; Redmond MD
    Ecology; 2023 Aug; 104(8):e4120. PubMed ID: 37303252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does masting scale with plant size? High reproductive variability and low synchrony in small and unproductive individuals.
    Bogdziewicz M; Szymkowiak J; Calama R; Crone EE; Espelta JM; Lesica P; Marino S; Steele MA; Tenhumberg B; Tyre A; Żywiec M; Kelly D
    Ann Bot; 2020 Oct; 126(5):971-979. PubMed ID: 32574370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What drives masting? The phenological synchrony hypothesis.
    Koenig WD; Knops JM; Carmen WJ; Pearse IS
    Ecology; 2015 Jan; 96(1):184-92. PubMed ID: 26236903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.
    Anderegg LD; HilleRisLambers J
    Glob Chang Biol; 2016 Mar; 22(3):1029-45. PubMed ID: 26663665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate warming causes mast seeding to break down by reducing sensitivity to weather cues.
    Bogdziewicz M; Hacket-Pain A; Kelly D; Thomas PA; Lageard J; Tanentzap AJ
    Glob Chang Biol; 2021 May; 27(9):1952-1961. PubMed ID: 33604979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Moran effect and environmental vetoes: phenological synchrony and drought drive seed production in a Mediterranean oak.
    Bogdziewicz M; Fernández-Martínez M; Bonal R; Belmonte J; Espelta JM
    Proc Biol Sci; 2017 Nov; 284(1866):. PubMed ID: 29093224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread breakdown in masting in European beech due to rising summer temperatures.
    Foest JJ; Bogdziewicz M; Pesendorfer MB; Ascoli D; Cutini A; Nussbaumer A; Verstraeten A; Beudert B; Chianucci F; Mezzavilla F; Gratzer G; Kunstler G; Meesenburg H; Wagner M; Mund M; Cools N; Vacek S; Schmidt W; Vacek Z; Hacket-Pain A
    Glob Chang Biol; 2024 May; 30(5):e17307. PubMed ID: 38709196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction.
    Ascoli D; Vacchiano G; Turco M; Conedera M; Drobyshev I; Maringer J; Motta R; Hacket-Pain A
    Nat Commun; 2017 Dec; 8(1):2205. PubMed ID: 29263383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Within-season synchrony of a masting conifer enhances seed escape.
    Archibald DW; McAdam AG; Boutin S; Fletcher QE; Humphries MM
    Am Nat; 2012 Apr; 179(4):536-44. PubMed ID: 22437182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated seed failure as an environmental veto to synchronize reproduction of masting plants.
    Bogdziewicz M; Steele MA; Marino S; Crone EE
    New Phytol; 2018 Jul; 219(1):98-108. PubMed ID: 29577320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-annual variation in seed production has increased over time (1900-2014).
    Pearse IS; LaMontagne JM; Koenig WD
    Proc Biol Sci; 2017 Dec; 284(1868):. PubMed ID: 29212721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers' climate on ring width.
    Hacket-Pain AJ; Friend AD; Lageard JG; Thomas PA
    Tree Physiol; 2015 Mar; 35(3):319-30. PubMed ID: 25721369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraspecific Niche Models for Ponderosa Pine (Pinus ponderosa) Suggest Potential Variability in Population-Level Response to Climate Change.
    Maguire KC; Shinneman DJ; Potter KM; Hipkins VD
    Syst Biol; 2018 Nov; 67(6):965-978. PubMed ID: 29548012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Masting is uncommon in trees that depend on mutualist dispersers in the context of global climate and fertility gradients.
    Qiu T; Aravena MC; Ascoli D; Bergeron Y; Bogdziewicz M; Boivin T; Bonal R; Caignard T; Cailleret M; Calama R; Calderon SD; Camarero JJ; Chang-Yang CH; Chave J; Chianucci F; Courbaud B; Cutini A; Das AJ; Delpierre N; Delzon S; Dietze M; Dormont L; Espelta JM; Fahey TJ; Farfan-Rios W; Franklin JF; Gehring CA; Gilbert GS; Gratzer G; Greenberg CH; Guignabert A; Guo Q; Hacket-Pain A; Hampe A; Han Q; Holik J; Hoshizaki K; Ibanez I; Johnstone JF; Journé V; Kitzberger T; Knops JMH; Kunstler G; Kurokawa H; Lageard JGA; LaMontagne JM; Lefevre F; Leininger T; Limousin JM; Lutz JA; Macias D; Marell A; McIntire EJB; Moore CM; Moran E; Motta R; Myers JA; Nagel TA; Naoe S; Noguchi M; Oguro M; Parmenter R; Pearse IS; Perez-Ramos IM; Piechnik L; Podgorski T; Poulsen J; Redmond MD; Reid CD; Rodman KC; Rodriguez-Sanchez F; Samonil P; Sanguinetti JD; Scher CL; Seget B; Sharma S; Shibata M; Silman M; Steele MA; Stephenson NL; Straub JN; Sutton S; Swenson JJ; Swift M; Thomas PA; Uriarte M; Vacchiano G; Whipple AV; Whitham TG; Wion AP; Wright SJ; Zhu K; Zimmerman JK; Zywiec M; Clark JS
    Nat Plants; 2023 Jul; 9(7):1044-1056. PubMed ID: 37386149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.