These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20707319)

  • 1. Size differentiation and absolute quantification of gold nanoparticles via single particle detection with a laboratory-built high-sensitivity flow cytometer.
    Zhu S; Yang L; Long Y; Gao M; Huang T; Hang W; Yan X
    J Am Chem Soc; 2010 Sep; 132(35):12176-8. PubMed ID: 20707319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single gold nanoparticles counter: an ultrasensitive detection platform for one-step homogeneous immunoassays and DNA hybridization assays.
    Xie C; Xu F; Huang X; Dong C; Ren J
    J Am Chem Soc; 2009 Sep; 131(35):12763-70. PubMed ID: 19678640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of non-cross-linking interaction between DNA-modified gold nanoparticles and a DNA-modified flat gold surface using surface plasmon resonance imaging on a microchip.
    Sato Y; Hosokawa K; Maeda M
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):71-6. PubMed ID: 17976962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal lens detection of gold nanoparticles: theory and experiments.
    Brusnichkin AV; Nedosekin DA; Proskurnin MA; Zharov VP
    Appl Spectrosc; 2007 Nov; 61(11):1191-201. PubMed ID: 18028698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct determination of urinary lysozyme using surface plasmon resonance light-scattering of gold nanoparticles.
    Wang X; Xu Y; Xu X; Hu K; Xiang M; Li L; Liu F; Li N
    Talanta; 2010 Jul; 82(2):693-7. PubMed ID: 20602956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size- and distance-dependent nanoparticle surface-energy transfer (NSET) method for selective sensing of hepatitis C virus RNA.
    Griffin J; Singh AK; Senapati D; Rhodes P; Mitchell K; Robinson B; Yu E; Ray PC
    Chemistry; 2009; 15(2):342-51. PubMed ID: 19035615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of size and concentration of gold nanoparticles from extinction spectra.
    Khlebtsov NG
    Anal Chem; 2008 Sep; 80(17):6620-5. PubMed ID: 18642876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size.
    Nath N; Chilkoti A
    Anal Chem; 2004 Sep; 76(18):5370-8. PubMed ID: 15362894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance.
    Li X; Tamada K; Baba A; Knoll W; Hara M
    J Phys Chem B; 2006 Aug; 110(32):15755-62. PubMed ID: 16898722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-based nanolenses assembled on a well-defined DNA template.
    Bidault S; Abajo FJ; Polman A
    J Am Chem Soc; 2008 Mar; 130(9):2750-1. PubMed ID: 18266376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of the most common corneal dystrophies caused by BIGH3 gene point mutations using a multispot gold-capped nanoparticle array chip.
    Yoo SY; Kim DK; Park TJ; Kim EK; Tamiya E; Lee SY
    Anal Chem; 2010 Feb; 82(4):1349-57. PubMed ID: 20092310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes.
    Kwon MJ; Lee J; Wark AW; Lee HJ
    Anal Chem; 2012 Feb; 84(3):1702-7. PubMed ID: 22224823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonant Rayleigh light scattering response of individual Au nanoparticles to antigen-antibody interaction.
    Cao C; Sim SJ
    Lab Chip; 2009 Jul; 9(13):1836-9. PubMed ID: 19532956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of size and protein environment on electrochemical properties of gold nanoparticles on carbon electrodes.
    Abdullin TI; Bondar OV; Nikitina II; Bulatov ER; Morozov MV; Hilmutdinov AKh; Salakhov MKh; Culha M
    Bioelectrochemistry; 2009 Nov; 77(1):37-42. PubMed ID: 19574110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced detection of gold nanoparticles in agarose gel electrophoresis.
    Hasenoehrl C; Alexander CM; Azzarelli NN; Dabrowiak JC
    Electrophoresis; 2012 Apr; 33(8):1251-4. PubMed ID: 22589102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.