These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 20707376)

  • 1. Membrane-induced conformational changes of kyotorphin revealed by molecular dynamics simulations.
    Machuqueiro M; Campos SR; Soares CM; Baptista AM
    J Phys Chem B; 2010 Sep; 114(35):11659-67. PubMed ID: 20707376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational and orientational guidance of the analgesic dipeptide kyotorphin induced by lipidic membranes: putative correlation toward receptor docking.
    Lopes SC; Soares CM; Baptista AM; Goormaghtigh E; Cabral BJ; Castanho MA
    J Phys Chem B; 2006 Feb; 110(7):3385-94. PubMed ID: 16494353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pH-dependent conformational states of kyotorphin: a constant-pH molecular dynamics study.
    Machuqueiro M; Baptista AM
    Biophys J; 2007 Mar; 92(6):1836-45. PubMed ID: 17172294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constant-pH Molecular Dynamics Study of Kyotorphin in an Explicit Bilayer.
    Magalhães PR; Machuqueiro M; Baptista AM
    Biophys J; 2015 May; 108(9):2282-90. PubMed ID: 25954885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral recognition of D-kyotorphin by lipidic membranes: relevance toward improved analgesic efficiency.
    Lopes SC; Fedorov A; Castanho MA
    ChemMedChem; 2006 Jul; 1(7):723-8. PubMed ID: 16902926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anti-inflammatory action of the analgesic kyotorphin neuropeptide derivatives: insights of a lipid-mediated mechanism.
    Conceição K; Magalhães PR; Campos SR; Domingues MM; Ramu VG; Michalek M; Bertani P; Baptista AM; Heras M; Bardaji ER; Bechinger B; Ferreira ML; Castanho MA
    Amino Acids; 2016 Jan; 48(1):307-18. PubMed ID: 26347373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of tyrosine in Leu-enkephalin at a membrane-water interface: an ultrafast two-dimensional infrared study combined with density functional calculations and molecular dynamics simulations.
    Sul S; Feng Y; Le U; Tobias DJ; Ge NH
    J Phys Chem B; 2010 Jan; 114(2):1180-90. PubMed ID: 20017523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and dynamics of phospholamban in solution and in membrane bilayer: computer simulations.
    Houndonougbo Y; Kuczera K; Jas GS
    Biochemistry; 2005 Feb; 44(6):1780-92. PubMed ID: 15697203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational sampling of influenza fusion peptide in membrane bilayers as a function of termini and protonation states.
    Panahi A; Feig M
    J Phys Chem B; 2010 Jan; 114(3):1407-16. PubMed ID: 20043654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical conjugation of the neuropeptide kyotorphin and ibuprofen enhances brain targeting and analgesia.
    Ribeiro MM; Pinto AR; Domingues MM; Serrano I; Heras M; Bardaji ER; Tavares I; Castanho MA
    Mol Pharm; 2011 Oct; 8(5):1929-40. PubMed ID: 21830793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid-state NMR and simulation studies of equinatoxin II N-terminus interaction with lipid bilayers.
    Lam YH; Hung A; Norton RS; Separovic F; Watts A
    Proteins; 2010 Mar; 78(4):858-72. PubMed ID: 19847922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in micelles and bilayers: conformational analysis of peptide and lipids.
    Lagüe P; Roux B; Pastor RW
    J Mol Biol; 2005 Dec; 354(5):1129-41. PubMed ID: 16297931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH and ibuprofen on the phospholipid bilayer bending modulus.
    Boggara MB; Faraone A; Krishnamoorti R
    J Phys Chem B; 2010 Jun; 114(24):8061-6. PubMed ID: 20518571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers.
    Castro-Román F; Benz RW; White SH; Tobias DJ
    J Phys Chem B; 2006 Nov; 110(47):24157-64. PubMed ID: 17125387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of the pleckstrin homology domain with phosphatidylinositol phosphate and membranes: characterization via molecular dynamics simulations.
    Psachoulia E; Sansom MS
    Biochemistry; 2008 Apr; 47(14):4211-20. PubMed ID: 18341295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and hydrogen-bonding analyses of the interaction between model lipid bilayers.
    Eun C; Berkowitz ML
    J Phys Chem B; 2010 Mar; 114(8):3013-9. PubMed ID: 20143884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effects of the analgesic neuropeptides kyotorphin and neo-kyotorphin on enkephalin-degrading enzymes from monkey brain.
    Hazato T; Kase R; Ueda H; Takagi H; Katayama T
    Biochem Int; 1986 Mar; 12(3):379-83. PubMed ID: 3011001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.