These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20707554)

  • 1. Communication: Molecular dynamics simulations of the interfacial structure of alkali metal fluoride solutions.
    Feng H; Zhou J; Lu X; Fichthorn KA
    J Chem Phys; 2010 Aug; 133(6):061103. PubMed ID: 20707554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions.
    Brown MA; D'Auria R; Kuo IF; Krisch MJ; Starr DE; Bluhm H; Tobias DJ; Hemminger JC
    Phys Chem Chem Phys; 2008 Aug; 10(32):4778-84. PubMed ID: 18688520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and interaction of hydrated alkali metal ions at the graphite-water interface.
    Meng S; Gao S
    J Chem Phys; 2006 Jul; 125(1):014708. PubMed ID: 16863325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between glass ionomer cement and alkali metal fluoride solutions: the effect of different cations.
    Hadley PC; Billington RW; Williams JA; Pearson GJ
    Biomaterials; 2001 Dec; 22(23):3133-8. PubMed ID: 11603585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific Na+ and K+ cation effects on the interfacial water molecules at the air/aqueous salt solution interfaces probed with nonresonant second harmonic generation.
    Bian HT; Feng RR; Guo Y; Wang HF
    J Chem Phys; 2009 Apr; 130(13):134709. PubMed ID: 19355766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of ionic aqueous solutions at interfaces: an intrinsic structure analysis.
    Bresme F; Chacón E; Tarazona P; Wynveen A
    J Chem Phys; 2012 Sep; 137(11):114706. PubMed ID: 22998280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and dynamic properties of concentrated alkali halide solutions: a molecular dynamics simulation study.
    Du H; Rasaiah JC; Miller JD
    J Phys Chem B; 2007 Jan; 111(1):209-17. PubMed ID: 17201445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulations of electrolyte solutions at the (100) goethite surface.
    Kerisit S; Ilton ES; Parker SC
    J Phys Chem B; 2006 Oct; 110(41):20491-501. PubMed ID: 17034235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic Variations of Ion Hydration in Aqueous Alkali Metal Fluoride Solutions.
    Buchner R; Wachter W; Hefter G
    J Phys Chem B; 2019 Dec; 123(50):10868-10876. PubMed ID: 31789522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-liquid interfaces of aqueous solutions containing ammonium and sulfate: spectroscopic and molecular dynamics studies.
    Gopalakrishnan S; Jungwirth P; Tobias DJ; Allen HC
    J Phys Chem B; 2005 May; 109(18):8861-72. PubMed ID: 16852054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitated transfer of alkali-metal cations by dibenzo-18-crown-6 across the electrochemically polarized interface between an aqueous solution and a hydrophobic room-temperature ionic liquid.
    Nishi N; Murakami H; Imakura S; Kakiuchi T
    Anal Chem; 2006 Aug; 78(16):5805-12. PubMed ID: 16906727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-specific effects under confinement: the role of interfacial water.
    Argyris D; Cole DR; Striolo A
    ACS Nano; 2010 Apr; 4(4):2035-42. PubMed ID: 20373748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant behavior of "ellipsoidal" dicarbollide anions: a molecular dynamics study.
    Chevrot G; Schurhammer R; Wipff G
    J Phys Chem B; 2006 May; 110(19):9488-98. PubMed ID: 16686495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination numbers of alkali metal ions in aqueous solutions.
    Varma S; Rempe SB
    Biophys Chem; 2006 Dec; 124(3):192-9. PubMed ID: 16875774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The modifications of the final stages of the complement reaction by alkali metal cations.
    Dalmasso AP; Lelchuk R; Giavedoni EB; De Isola ED
    J Immunol; 1975 Jul; 115(1):63-8. PubMed ID: 239058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solute size effects on the solvation structure and diffusion of ions in liquid methanol under normal and cold conditions.
    Chowdhuri S; Chandra A
    J Chem Phys; 2006 Feb; 124(8):084507. PubMed ID: 16512729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the selective partitioning of cations into negatively charged nanopores in water.
    Yang L; Garde S
    J Chem Phys; 2007 Feb; 126(8):084706. PubMed ID: 17343468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid expanded monolayers of lipids as model systems to understand the anionic hofmeister series: 2. Ion partitioning is mostly a matter of size.
    Leontidis E; Aroti A
    J Phys Chem B; 2009 Feb; 113(5):1460-7. PubMed ID: 19143561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selectivity of bis(calix[4]diquinone) ionophores towards metal ions in solvent dimethylsulfoxide: a molecular mechanics and molecular dynamics study.
    Felix V; Drew MG; Webber PR; Beer PD
    Phys Chem Chem Phys; 2006 Jan; 8(4):521-32. PubMed ID: 16482295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqua ions-graphene interfacial and confinement behavior: insights from isobaric-isothermal molecular dynamics.
    Chialvo AA; Cummings PT
    J Phys Chem A; 2011 Jun; 115(23):5918-27. PubMed ID: 21491923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.