BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 20708172)

  • 1. The role of the corpus callosum in transcranial magnetic stimulation induced interhemispheric signal propagation.
    Voineskos AN; Farzan F; Barr MS; Lobaugh NJ; Mulsant BH; Chen R; Fitzgerald PB; Daskalakis ZJ
    Biol Psychiatry; 2010 Nov; 68(9):825-31. PubMed ID: 20708172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interhemispheric transfer of paired associative stimulation-induced plasticity in the human motor cortex.
    Shin HW; Sohn YH
    Neuroreport; 2011 Mar; 22(4):166-70. PubMed ID: 21263361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of rTMS over left and right dorsolateral premotor cortex on movement timing of either hand.
    Pollok B; Rothkegel H; Schnitzler A; Paulus W; Lang N
    Eur J Neurosci; 2008 Feb; 27(3):757-64. PubMed ID: 18279328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deactivation and activation of left frontal lobe during and after low-frequency repetitive transcranial magnetic stimulation over right prefrontal cortex: a near-infrared spectroscopy study.
    Hanaoka N; Aoyama Y; Kameyama M; Fukuda M; Mikuni M
    Neurosci Lett; 2007 Mar; 414(2):99-104. PubMed ID: 17293047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The size of the anterior corpus callosum correlates with the strength of hemispheric encoding-retrieval asymmetry in the ventrolateral prefrontal cortex.
    Kompus K; Kalpouzos G; Westerhausen R
    Brain Res; 2011 Oct; 1419():61-7. PubMed ID: 21925652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human motor corpus callosum.
    Wahl M; Ziemann U
    Rev Neurosci; 2008; 19(6):451-66. PubMed ID: 19317183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interhemispheric asymmetry in motor cortex disinhibition during bimanual movement.
    Stinear JW; Byblow WD
    Brain Res; 2004 Oct; 1022(1-2):81-7. PubMed ID: 15353216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interhemispheric transfer time and structural properties of the corpus callosum.
    Westerhausen R; Kreuder F; Woerner W; Huster RJ; Smit CM; Schweiger E; Wittling W
    Neurosci Lett; 2006 Dec; 409(2):140-5. PubMed ID: 17034948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcallosal sensorimotor integration: effects of sensory input on cortical projections to the contralateral hand.
    Swayne O; Rothwell J; Rosenkranz K
    Clin Neurophysiol; 2006 Apr; 117(4):855-63. PubMed ID: 16448846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning.
    Sisti HM; Geurts M; Gooijers J; Heitger MH; Caeyenberghs K; Beets IA; Serbruyns L; Leemans A; Swinnen SP
    Learn Mem; 2012 Jul; 19(8):351-7. PubMed ID: 22837217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS-EEG study.
    Daskalakis ZJ; Farzan F; Barr MS; Maller JJ; Chen R; Fitzgerald PB
    Neuropsychopharmacology; 2008 Nov; 33(12):2860-9. PubMed ID: 18322469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct temporospatial interhemispheric interactions in the human primary and premotor cortex during movement preparation.
    Liuzzi G; Hörniss V; Hoppe J; Heise K; Zimerman M; Gerloff C; Hummel FC
    Cereb Cortex; 2010 Jun; 20(6):1323-31. PubMed ID: 19906807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interhemispheric motor inhibition: its role in controlling electromyographic mirror activity.
    Hübers A; Orekhov Y; Ziemann U
    Eur J Neurosci; 2008 Jul; 28(2):364-71. PubMed ID: 18702707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interhemispheric transfer deficit in alexithymia: a transcranial magnetic stimulation study.
    Romei V; De Gennaro L; Fratello F; Curcio G; Ferrara M; Pascual-Leone A; Bertini M
    Psychother Psychosom; 2008; 77(3):175-81. PubMed ID: 18332615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring latency distribution of transcallosal fibers using transcranial magnetic stimulation.
    Ni Z; Leodori G; Vial F; Zhang Y; Avram AV; Pajevic S; Basser PJ; Hallett M
    Brain Stimul; 2020; 13(5):1453-1460. PubMed ID: 32791313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversion of transcallosal interhemispheric neuronal inhibition on motor cortex after contralateral C7 neurotization.
    Hua XY; Zuo CT; Xu WD; Liu HQ; Zheng MX; Xu JG; Gu YD
    Clin Neurol Neurosurg; 2012 Sep; 114(7):1035-8. PubMed ID: 22386899
    [No Abstract]   [Full Text] [Related]  

  • 17. Intrahemispheric dysfunction in primary motor cortex without corpus callosum: a transcranial magnetic stimulation study.
    Fecteau S; Lassonde M; Théoret H
    BMC Neurol; 2006 Jun; 6():21. PubMed ID: 16790050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the corpus callosum in speech comprehension: interfacing syntax and prosody.
    Friederici AD; von Cramon DY; Kotz SA
    Neuron; 2007 Jan; 53(1):135-45. PubMed ID: 17196536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys.
    Gould HJ; Cusick CG; Pons TP; Kaas JH
    J Comp Neurol; 1986 May; 247(3):297-325. PubMed ID: 3722441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural synchrony and white matter variations in the human brain--relation between evoked γ frequency and corpus callosum morphology.
    Zaehle T; Herrmann CS
    Int J Psychophysiol; 2011 Jan; 79(1):49-54. PubMed ID: 20600369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.