These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2070830)

  • 1. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells.
    Nakahara H; Dennis JE; Bruder SP; Haynesworth SE; Lennon DP; Caplan AI
    Exp Cell Res; 1991 Aug; 195(2):492-503. PubMed ID: 2070830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal and spatial distribution of type XII collagen in high cell density culture of periosteal-derived cells.
    Nakahara H; Watanabe K; Sugrue SP; Olsen BR; Caplan AI
    Dev Biol; 1990 Dec; 142(2):481-5. PubMed ID: 1701739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo osteochondrogenic potential of cultured cells derived from the periosteum.
    Nakahara H; Bruder SP; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1990 Oct; (259):223-32. PubMed ID: 2208860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro differentiation potential of the periosteal cells from a membrane bone, the quadratojugal of the embryonic chick.
    Fang J; Hall BK
    Dev Biol; 1996 Dec; 180(2):701-12. PubMed ID: 8954738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum.
    Nakahara H; Bruder SP; Haynesworth SE; Holecek JJ; Baber MA; Goldberg VM; Caplan AI
    Bone; 1990; 11(3):181-8. PubMed ID: 2390376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells.
    Gruber R; Mayer C; Bobacz K; Krauth MT; Graninger W; Luyten FP; Erlacher L
    Endocrinology; 2001 May; 142(5):2087-94. PubMed ID: 11316776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chondrogenic cell differentiation from membrane bone periostea.
    Fang J; Hall BK
    Anat Embryol (Berl); 1997 Nov; 196(5):349-62. PubMed ID: 9406838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo.
    Nakahara H; Goldberg VM; Caplan AI
    J Orthop Res; 1991 Jul; 9(4):465-76. PubMed ID: 2045973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histochemical evidence of the initial chondrogenesis and osteogenesis in the periosteum of a rib fractured model: implications of osteocyte involvement in periosteal chondrogenesis.
    Li M; Amizuka N; Oda K; Tokunaga K; Ito T; Takeuchi K; Takagi R; Maeda T
    Microsc Res Tech; 2004 Jul; 64(4):330-42. PubMed ID: 15481050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypertrophic chondrocytes undergo further differentiation in culture.
    Descalzi Cancedda F; Gentili C; Manduca P; Cancedda R
    J Cell Biol; 1992 Apr; 117(2):427-35. PubMed ID: 1560033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone formation via cartilage models: the "borderline" chondrocyte.
    Bianco P; Cancedda FD; Riminucci M; Cancedda R
    Matrix Biol; 1998 Jul; 17(3):185-92. PubMed ID: 9707341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Periosteally derived osteoblast-like cells differentiate into chondrocytes in suspension culture in agarose.
    Bahrami S; Stratmann U; Wiesmann HP; Mokrys K; Bruckner P; Szuwart T
    Anat Rec; 2000 Jun; 259(2):124-30. PubMed ID: 10820314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells.
    Huang JI; Beanes SR; Zhu M; Lorenz HP; Hedrick MH; Benhaim P
    Plast Reconstr Surg; 2002 Mar; 109(3):1033-41; discussion 1042-3. PubMed ID: 11884830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cartilage-derived morphogenetic protein 1 initiates chondrogenic differentiation of human dermal fibroblasts in vitro].
    Cui L; Yin S; Deng CL; Yang GH; Chen FG; Liu W; Liu DL; Cao YL
    Zhonghua Yi Xue Za Zhi; 2004 Aug; 84(15):1304-9. PubMed ID: 15387971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells.
    Park J; Gelse K; Frank S; von der Mark K; Aigner T; Schneider H
    J Gene Med; 2006 Jan; 8(1):112-25. PubMed ID: 16142704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vis-à-vis cells and the priming of bone formation.
    Riminucci M; Bradbeer JN; Corsi A; Gentili C; Descalzi F; Cancedda R; Bianco P
    J Bone Miner Res; 1998 Dec; 13(12):1852-61. PubMed ID: 9844103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen gene expression during chondrogenesis from chick periosteum-derived cells.
    Nakata K; Nakahara H; Kimura T; Kojima A; Iwasaki M; Caplan AI; Ono K
    FEBS Lett; 1992 Mar; 299(3):278-82. PubMed ID: 1544506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo.
    Nakahara H; Goldberg VM; Caplan AI
    Clin Orthop Relat Res; 1992 Mar; (276):291-8. PubMed ID: 1537169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic phenotypes and mineralization of cultured human periosteal-derived cells.
    Park BW; Hah YS; Kim DR; Kim JR; Byun JH
    Arch Oral Biol; 2007 Oct; 52(10):983-9. PubMed ID: 17543271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of human chondrocytes, osteoblasts and fibroblasts seeded onto a type I/III collagen sponge under different culture conditions. A light, scanning and transmission electron microscopy study.
    Fuss M; Ehlers EM; Russlies M; Rohwedel J; Behrens P
    Ann Anat; 2000 Jul; 182(4):303-10. PubMed ID: 10932320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.