BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 20708404)

  • 41. Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass.
    Kim Y; Ximenes E; Mosier NS; Ladisch MR
    Enzyme Microb Technol; 2011 Apr; 48(4-5):408-15. PubMed ID: 22112958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water.
    Daorattanachai P; Viriya-empikul N; Laosiripojana N; Faungnawakij K
    Bioresour Technol; 2013 Sep; 144():504-12. PubMed ID: 23907066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of cellulase reaction on pure cellulosic substrates.
    Gupta R; Lee YY
    Biotechnol Bioeng; 2009 Apr; 102(6):1570-81. PubMed ID: 19061239
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant.
    Schmidt A; Gübitz GM; Kratky C
    Biochemistry; 1999 Feb; 38(8):2403-12. PubMed ID: 10029534
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides.
    Yoshida M; Liu Y; Uchida S; Kawarada K; Ukagami Y; Ichinose H; Kaneko S; Fukuda K
    Biosci Biotechnol Biochem; 2008 Mar; 72(3):805-10. PubMed ID: 18323635
    [TBL] [Abstract][Full Text] [Related]  

  • 46. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum.
    Lynd LR; Grethlein HE
    Biotechnol Bioeng; 1987 Jan; 29(1):92-100. PubMed ID: 18561134
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: II. Quantification of inhibition and suitability of membrane reactors.
    Andrić P; Meyer AS; Jensen PA; Dam-Johansen K
    Biotechnol Adv; 2010; 28(3):407-25. PubMed ID: 20172020
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of enzyme loading and β-glucosidase supplementation on enzymatic hydrolysis of switchgrass processed by leading pretreatment technologies.
    Pallapolu VR; Lee YY; Garlock RJ; Balan V; Dale BE; Kim Y; Mosier NS; Ladisch MR; Falls M; Holtzapple MT; Sierra-Ramirez R; Shi J; Ebrik MA; Redmond T; Yang B; Wyman CE; Donohoe BS; Vinzant TB; Elander RT; Hames B; Thomas S; Warner RE
    Bioresour Technol; 2011 Dec; 102(24):11115-20. PubMed ID: 21507624
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization and kinetic analysis of a thermostable GH3 beta-glucosidase from Penicillium brasilianum.
    Krogh KB; Harris PV; Olsen CL; Johansen KS; Hojer-Pedersen J; Borjesson J; Olsson L
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):143-54. PubMed ID: 19756584
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis.
    Jing X; Zhang X; Bao J
    Appl Biochem Biotechnol; 2009 Dec; 159(3):696-707. PubMed ID: 19184544
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis.
    Redding AP; Wang Z; Keshwani DR; Cheng JJ
    Bioresour Technol; 2011 Jan; 102(2):1415-24. PubMed ID: 20943378
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the beta-xylosidase/alpha-arabinosidase from Sulfolobus solfataricus Oalpha.
    Kambourova M; Mandeva R; Fiume I; Maurelli L; Rossi M; Morana A
    J Appl Microbiol; 2007 Jun; 102(6):1586-93. PubMed ID: 17578424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of enzyme complexes for lignocellulose hydrolysis.
    Berlin A; Maximenko V; Gilkes N; Saddler J
    Biotechnol Bioeng; 2007 Jun; 97(2):287-96. PubMed ID: 17058283
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of the degree of polymerization on the binding of xyloglucans to cellulose.
    Hayashi T; Takeda T; Ogawa K; Mitsuishi Y
    Plant Cell Physiol; 1994 Sep; 35(6):893-9. PubMed ID: 7981962
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deficiency of cellulase activity measurements for enzyme evaluation.
    Pryor SW; Nahar N
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1737-50. PubMed ID: 20407843
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hydrolytic enzyme of cellulose for complex formulation applied research.
    Lin ZX; Zhang HM; Ji XJ; Chen JW; Huang H
    Appl Biochem Biotechnol; 2011 May; 164(1):23-33. PubMed ID: 20972891
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic glycosyl hydrolase screening for biomass-to-biofuel conversion.
    Bharadwaj R; Chen Z; Datta S; Holmes BM; Sapra R; Simmons BA; Adams PD; Singh AK
    Anal Chem; 2010 Nov; 82(22):9513-20. PubMed ID: 20964411
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mass balance and transformation of corn stover by pretreatment with different dilute organic acids.
    Qin L; Liu ZH; Li BZ; Dale BE; Yuan YJ
    Bioresour Technol; 2012 May; 112():319-26. PubMed ID: 22437047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars.
    Liu Z; Padmanabhan S; Cheng K; Schwyter P; Pauly M; Bell AT; Prausnitz JM
    Bioresour Technol; 2013 May; 135():23-9. PubMed ID: 23257277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.