BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20709054)

  • 1. TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM; Burke RD
    Dev Biol; 2010 Nov; 347(1):71-81. PubMed ID: 20709054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
    Yaguchi S; Yaguchi J; Burke RD
    Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Burke RD
    Dev Biol; 2007 Feb; 302(2):494-503. PubMed ID: 17101124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental origin of peripheral ciliary band neurons in the sea urchin embryo.
    Slota LA; Miranda E; Peskin B; McClay DR
    Dev Biol; 2020 Mar; 459(2):72-78. PubMed ID: 31881199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus.
    Tsironis I; Paganos P; Gouvi G; Tsimpos P; Stamopoulou A; Arnone MI; Flytzanis CN
    Dev Biol; 2021 Jul; 475():131-144. PubMed ID: 33484706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural development in Eucidaris tribuloides and the evolutionary history of the echinoid larval nervous system.
    Bishop CD; MacNeil KE; Patel D; Taylor VJ; Burke RD
    Dev Biol; 2013 May; 377(1):236-44. PubMed ID: 23506838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos.
    Mellott DO; Thisdelle J; Burke RD
    Development; 2017 Oct; 144(19):3602-3611. PubMed ID: 28851710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chordin is required for neural but not axial development in sea urchin embryos.
    Bradham CA; Oikonomou C; Kühn A; Core AB; Modell JW; McClay DR; Poustka AJ
    Dev Biol; 2009 Apr; 328(2):221-33. PubMed ID: 19389361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment.
    Agca C; Klein WH; Venuti JM
    Mech Dev; 2009; 126(5-6):430-42. PubMed ID: 19368800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva.
    Luo YJ; Su YH
    PLoS Biol; 2012; 10(10):e1001402. PubMed ID: 23055827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
    Lapraz F; Besnardeau L; Lepage T
    PLoS Biol; 2009 Nov; 7(11):e1000248. PubMed ID: 19956794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side.
    Duboc V; Röttinger E; Lapraz F; Besnardeau L; Lepage T
    Dev Cell; 2005 Jul; 9(1):147-58. PubMed ID: 15992548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering and modelling the TGF-β signalling interplays specifying the dorsal-ventral axis of the sea urchin embryo.
    Floc'hlay S; Molina MD; Hernandez C; Haillot E; Thomas-Chollier M; Lepage T; Thieffry D
    Development; 2021 Jan; 148(2):. PubMed ID: 33298464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning.
    Yankura KA; Koechlein CS; Cryan AF; Cheatle A; Hinman VF
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8591-6. PubMed ID: 23650356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.