BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20709054)

  • 21. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo.
    Range R; Lepage T
    Dev Biol; 2011 Sep; 357(2):440-9. PubMed ID: 21782809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evolution of nervous system patterning: insights from sea urchin development.
    Angerer LM; Yaguchi S; Angerer RC; Burke RD
    Development; 2011 Sep; 138(17):3613-23. PubMed ID: 21828090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectoderm GRN.
    Li E; Materna SC; Davidson EH
    Dev Biol; 2013 Oct; 382(1):268-79. PubMed ID: 23933172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.
    Saudemont A; Haillot E; Mekpoh F; Bessodes N; Quirin M; Lapraz F; Duboc V; Röttinger E; Range R; Oisel A; Besnardeau L; Wincker P; Lepage T
    PLoS Genet; 2010 Dec; 6(12):e1001259. PubMed ID: 21203442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.
    Haillot E; Molina MD; Lapraz F; Lepage T
    PLoS Biol; 2015; 13(9):e1002247. PubMed ID: 26352141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm.
    McIntyre DC; Seay NW; Croce JC; McClay DR
    Development; 2013 Dec; 140(24):4881-9. PubMed ID: 24227654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms.
    Garner S; Zysk I; Byrne G; Kramer M; Moller D; Taylor V; Burke RD
    Development; 2016 Jan; 143(2):286-97. PubMed ID: 26511925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis.
    Angerer LM; Oleksyn DW; Logan CY; McClay DR; Dale L; Angerer RC
    Development; 2000 Mar; 127(5):1105-14. PubMed ID: 10662649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
    Nam J; Su YH; Lee PY; Robertson AJ; Coffman JA; Davidson EH
    Dev Biol; 2007 Jun; 306(2):860-9. PubMed ID: 17451671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown.
    Ben-Tabou de-Leon S; Su YH; Lin KT; Li E; Davidson EH
    Dev Biol; 2013 Feb; 374(1):245-54. PubMed ID: 23211652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo.
    Molina MD; de Crozé N; Haillot E; Lepage T
    Curr Opin Genet Dev; 2013 Aug; 23(4):445-53. PubMed ID: 23769944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of early requirements for preplacodal ectoderm and sensory organ development.
    Kwon HJ; Bhat N; Sweet EM; Cornell RA; Riley BB
    PLoS Genet; 2010 Sep; 6(9):e1001133. PubMed ID: 20885782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From larval bodies to adult body plans: patterning the development of the presumptive adult ectoderm in the sea urchin larva.
    Minsuk SB; Andrews ME; Raff RA
    Dev Genes Evol; 2005 Aug; 215(8):383-92. PubMed ID: 15834585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serotonin stimulates [Ca2+]i elevation in ciliary ectodermal cells of echinoplutei through a serotonin receptor cell network in the blastocoel.
    Katow H; Yaguchi S; Kyozuka K
    J Exp Biol; 2007 Feb; 210(Pt 3):403-12. PubMed ID: 17234609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-range cell-cell signals control ectodermal patterning in the oral region of the sea urchin embryo.
    Hardin J; Armstrong N
    Dev Biol; 1997 Feb; 182(1):134-49. PubMed ID: 9073456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dorsal-ventral axis formation in sea urchin embryos.
    Su YH
    Curr Top Dev Biol; 2022; 146():183-210. PubMed ID: 35152983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurogenic gene regulatory pathways in the sea urchin embryo.
    Wei Z; Angerer LM; Angerer RC
    Development; 2016 Jan; 143(2):298-305. PubMed ID: 26657764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
    Coffman JA; McCarthy JJ; Dickey-Sims C; Robertson AJ
    Dev Biol; 2004 Sep; 273(1):160-71. PubMed ID: 15302605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor.
    Bell E; Muñoz-Sanjuán I; Altmann CR; Vonica A; Brivanlou AH
    Development; 2003 Apr; 130(7):1381-9. PubMed ID: 12588853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.