BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 20709077)

  • 1. Modeling studies of chromatin fiber structure as a function of DNA linker length.
    Perišić O; Collepardo-Guevara R; Schlick T
    J Mol Biol; 2010 Nov; 403(5):777-802. PubMed ID: 20709077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
    Collepardo-Guevara R; Schlick T
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8061-6. PubMed ID: 24847063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes.
    Schlick T; Perisić O
    Phys Chem Chem Phys; 2009 Dec; 11(45):10729-37. PubMed ID: 20145817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive effect of linker histone binding mode and subtype on chromatin condensation.
    Perišić O; Portillo-Ledesma S; Schlick T
    Nucleic Acids Res; 2019 Jun; 47(10):4948-4957. PubMed ID: 30968131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin.
    Luque A; Ozer G; Schlick T
    Biophys J; 2016 Jun; 110(11):2309-2319. PubMed ID: 27276249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of the Linker Histone and Chromatin Condensation on the Nucleosome Environment.
    Perišić O; Schlick T
    J Phys Chem B; 2017 Aug; 121(33):7823-7832. PubMed ID: 28732449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure.
    Routh A; Sandin S; Rhodes D
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8872-7. PubMed ID: 18583476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of linker histone's nucleosome binding affinity on chromatin unfolding mechanisms.
    Collepardo-Guevara R; Schlick T
    Biophys J; 2011 Oct; 101(7):1670-80. PubMed ID: 21961593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling and DNA topology of compact 2-start and 1-start chromatin fibres.
    Wu C; Travers A
    Nucleic Acids Res; 2019 Oct; 47(18):9902-9924. PubMed ID: 31219588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short nucleosome repeats impose rotational modulations on chromatin fibre folding.
    Correll SJ; Schubert MH; Grigoryev SA
    EMBO J; 2012 May; 31(10):2416-26. PubMed ID: 22473209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding.
    Kaczmarczyk A; Allahverdi A; Brouwer TB; Nordenskiöld L; Dekker NH; van Noort J
    J Biol Chem; 2017 Oct; 292(42):17506-17513. PubMed ID: 28855255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments.
    Arya G; Schlick T
    J Phys Chem A; 2009 Apr; 113(16):4045-59. PubMed ID: 19298048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical role for linker DNA in higher-order folding of chromatin fibers.
    Brouwer T; Pham C; Kaczmarczyk A; de Voogd WJ; Botto M; Vizjak P; Mueller-Planitz F; van Noort J
    Nucleic Acids Res; 2021 Mar; 49(5):2537-2551. PubMed ID: 33589918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber.
    Kruithof M; Chien FT; Routh A; Logie C; Rhodes D; van Noort J
    Nat Struct Mol Biol; 2009 May; 16(5):534-40. PubMed ID: 19377481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions.
    Grigoryev SA; Arya G; Correll S; Woodcock CL; Schlick T
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13317-22. PubMed ID: 19651606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic condensation of linker histone C-terminal domain regulates chromatin structure.
    Luque A; Collepardo-Guevara R; Grigoryev S; Schlick T
    Nucleic Acids Res; 2014 Jul; 42(12):7553-60. PubMed ID: 24906881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone H1 binding to nucleosome arrays depends on linker DNA length and trajectory.
    Dombrowski M; Engeholm M; Dienemann C; Dodonova S; Cramer P
    Nat Struct Mol Biol; 2022 May; 29(5):493-501. PubMed ID: 35581345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical, conformational and topological restraints in regular nucleosome compaction in chromatin.
    Scipioni A; Turchetti G; Morosetti S; De Santis P
    Biophys Chem; 2010 May; 148(1-3):56-67. PubMed ID: 20236753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure.
    Robinson PJ; Fairall L; Huynh VA; Rhodes D
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6506-11. PubMed ID: 16617109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.