These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 20709176)

  • 1. Detecting stable distributed patterns of brain activation using Gini contrast.
    Langs G; Menze BH; Lashkari D; Golland P
    Neuroimage; 2011 May; 56(2):497-507. PubMed ID: 20709176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial-temporal modelling of fMRI data through spatially regularized mixture of hidden process models.
    Shen Y; Mayhew SD; Kourtzi Z; Tiňo P
    Neuroimage; 2014 Jan; 84():657-71. PubMed ID: 24041873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks.
    Yourganov G; Schmah T; Churchill NW; Berman MG; Grady CL; Strother SC
    Neuroimage; 2014 Aug; 96():117-32. PubMed ID: 24705202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability-based voxel selection.
    Tarhan L; Konkle T
    Neuroimage; 2020 Feb; 207():116350. PubMed ID: 31733373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of spatial fMRI resolution on the classification of naturalistic movies.
    Mandelkow H; de Zwart JA; Duyn JH
    Neuroimage; 2017 Nov; 162():45-55. PubMed ID: 28842385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nonparametric bayesian approach to detecting spatial activation patterns in fMRI data.
    Kim S; Smyth P; Stern H
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):217-24. PubMed ID: 17354775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse logistic regression for whole-brain classification of fMRI data.
    Ryali S; Supekar K; Abrams DA; Menon V
    Neuroimage; 2010 Jun; 51(2):752-64. PubMed ID: 20188193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of multivariate classifiers and response normalizations for pattern-information fMRI.
    Misaki M; Kim Y; Bandettini PA; Kriegeskorte N
    Neuroimage; 2010 Oct; 53(1):103-18. PubMed ID: 20580933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially aggregated multiclass pattern classification in functional MRI using optimally selected functional brain areas.
    Zheng W; Ackley ES; Martínez-Ramón M; Posse S
    Magn Reson Imaging; 2013 Feb; 31(2):247-61. PubMed ID: 22902471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovering brain regions relevant to obsessive-compulsive disorder identification through bagging and transduction.
    Parrado-Hernández E; Gómez-Verdejo V; Martínez-Ramón M; Shawe-Taylor J; Alonso P; Pujol J; Menchón JM; Cardoner N; Soriano-Mas C
    Med Image Anal; 2014 Apr; 18(3):435-48. PubMed ID: 24556078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models.
    Faisan S; Thoraval L; Armspach JP; Metz-Lutz MN; Heitz F
    IEEE Trans Med Imaging; 2005 Feb; 24(2):263-76. PubMed ID: 15707252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-subject brain decoding with multi-task feature selection.
    Wang L; Tang X; Liu W; Peng Y; Gao T; Xu Y
    Biomed Mater Eng; 2014; 24(6):2987-94. PubMed ID: 25227006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sparse regularization techniques provide novel insights into outcome integration processes.
    Mohr H; Wolfensteller U; Frimmel S; Ruge H
    Neuroimage; 2015 Jan; 104():163-76. PubMed ID: 25467302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns.
    Yamashita O; Sato MA; Yoshioka T; Tong F; Kamitani Y
    Neuroimage; 2008 Oct; 42(4):1414-29. PubMed ID: 18598768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A SVM-based quantitative fMRI method for resting-state functional network detection.
    Song X; Chen NK
    Magn Reson Imaging; 2014 Sep; 32(7):819-31. PubMed ID: 24928301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated classification of fMRI data employing trial-based imagery tasks.
    Lee JH; Marzelli M; Jolesz FA; Yoo SS
    Med Image Anal; 2009 Jun; 13(3):392-404. PubMed ID: 19233711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable whole-brain prediction analysis with GraphNet.
    Grosenick L; Klingenberg B; Katovich K; Knutson B; Taylor JE
    Neuroimage; 2013 May; 72():304-21. PubMed ID: 23298747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The advantage of brief fMRI acquisition runs for multi-voxel pattern detection across runs.
    Coutanche MN; Thompson-Schill SL
    Neuroimage; 2012 Jul; 61(4):1113-9. PubMed ID: 22498658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.