These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 20709385)

  • 1. The role of domain-general frontal systems in language comprehension: evidence from dual-task interference and semantic ambiguity.
    Rodd JM; Johnsrude IS; Davis MH
    Brain Lang; 2010 Dec; 115(3):182-8. PubMed ID: 20709385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociating frontotemporal contributions to semantic ambiguity resolution in spoken sentences.
    Rodd JM; Johnsrude IS; Davis MH
    Cereb Cortex; 2012 Aug; 22(8):1761-73. PubMed ID: 21968566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural aspects of sentence comprehension: syntactic complexity, reversibility, and reanalysis.
    Meltzer JA; McArdle JJ; Schafer RJ; Braun AR
    Cereb Cortex; 2010 Aug; 20(8):1853-64. PubMed ID: 19920058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Heteromodal Word-Meaning Binding Site in the Visual Word Form Area under Top-Down Frontoparietal Control.
    Qin L; Lyu B; Shu S; Yin Y; Wang X; Ge J; Siok WT; Gao JH
    J Neurosci; 2021 Apr; 41(17):3854-3869. PubMed ID: 33687963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Neural Time Course of Semantic Ambiguity Resolution in Speech Comprehension.
    MacGregor LJ; Rodd JM; Gilbert RA; Hauk O; Sohoglu E; Davis MH
    J Cogn Neurosci; 2020 Mar; 32(3):403-425. PubMed ID: 31682564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An fMRI study investigating effects of conceptually related sentences on the perception of degraded speech.
    Guediche S; Reilly M; Santiago C; Laurent P; Blumstein SE
    Cortex; 2016 Jun; 79():57-74. PubMed ID: 27100909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conflict control during sentence comprehension: fMRI evidence.
    Ye Z; Zhou X
    Neuroimage; 2009 Oct; 48(1):280-90. PubMed ID: 19540923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes.
    Friederici AD; Rüschemeyer SA; Hahne A; Fiebach CJ
    Cereb Cortex; 2003 Feb; 13(2):170-7. PubMed ID: 12507948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural basis of semantic and syntactic interference in sentence comprehension.
    Glaser YG; Martin RC; Van Dyke JA; Hamilton AC; Tan Y
    Brain Lang; 2013 Sep; 126(3):314-26. PubMed ID: 23933471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Context-dependent interpretation of words: evidence for interactive neural processes.
    Gennari SP; MacDonald MC; Postle BR; Seidenberg MS
    Neuroimage; 2007 Apr; 35(3):1278-86. PubMed ID: 17321757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sign and speech: amodal commonality in left hemisphere dominance for comprehension of sentences.
    Sakai KL; Tatsuno Y; Suzuki K; Kimura H; Ichida Y
    Brain; 2005 Jun; 128(Pt 6):1407-17. PubMed ID: 15728651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An fMRI study of canonical and noncanonical word order in German.
    Bahlmann J; Rodriguez-Fornells A; Rotte M; Münte TF
    Hum Brain Mapp; 2007 Oct; 28(10):940-9. PubMed ID: 17274018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of anterior and posterior structures in lexical-semantic processing: an fMRI study comparing implicit and explicit tasks.
    Ruff I; Blumstein SE; Myers EB; Hutchison E
    Brain Lang; 2008 Apr; 105(1):41-9. PubMed ID: 18279947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the left inferior frontal gyrus in implicit semantic competition and selection: An event-related fMRI study.
    Grindrod CM; Bilenko NY; Myers EB; Blumstein SE
    Brain Res; 2008 Sep; 1229():167-78. PubMed ID: 18656462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding words in context: the role of Broca's area in word comprehension.
    Bedny M; Hulbert JC; Thompson-Schill SL
    Brain Res; 2007 May; 1146():101-14. PubMed ID: 17123486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity.
    Rodd JM; Davis MH; Johnsrude IS
    Cereb Cortex; 2005 Aug; 15(8):1261-9. PubMed ID: 15635062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of LIFG-based executive control in sentence comprehension.
    Vuong LC; Martin RC
    Cogn Neuropsychol; 2015; 32(5):243-65. PubMed ID: 26216232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activations of "motor" and other non-language structures during sentence comprehension.
    Stowe LA; Paans AM; Wijers AA; Zwarts F
    Brain Lang; 2004 May; 89(2):290-9. PubMed ID: 15068911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural responses to the production and comprehension of syntax in identical utterances.
    Indefrey P; Hellwig F; Herzog H; Seitz RJ; Hagoort P
    Brain Lang; 2004 May; 89(2):312-9. PubMed ID: 15068913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of five fMRI protocols for mapping speech comprehension systems.
    Binder JR; Swanson SJ; Hammeke TA; Sabsevitz DS
    Epilepsia; 2008 Dec; 49(12):1980-97. PubMed ID: 18513352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.