These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 20709633)
1. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate-agarose scaffolds for bone regeneration. Puértolas JA; Vadillo JL; Sánchez-Salcedo S; Nieto A; Gómez-Barrena E; Vallet-Regí M Acta Biomater; 2011 Feb; 7(2):841-7. PubMed ID: 20709633 [TBL] [Abstract][Full Text] [Related]
2. Mullins effect behaviour under compression in micelle-templated silica and micelle-templated silica/agarose systems. Puértolas JA; Vadillo JL; Sánchez-Salcedo S; Nieto A; Gómez-Barrena E; Vallet-Regí M J Mater Sci Mater Med; 2012 Feb; 23(2):229-38. PubMed ID: 22076528 [TBL] [Abstract][Full Text] [Related]
3. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
4. Mechanical properties and cytocompatibility of poly(ε-caprolactone)-infiltrated biphasic calcium phosphate scaffolds with bimodal pore distribution. Peroglio M; Gremillard L; Gauthier C; Chazeau L; Verrier S; Alini M; Chevalier J Acta Biomater; 2010 Nov; 6(11):4369-79. PubMed ID: 20553981 [TBL] [Abstract][Full Text] [Related]
5. Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration. Martínez-Vázquez FJ; Perera FH; Miranda P; Pajares A; Guiberteau F Acta Biomater; 2010 Nov; 6(11):4361-8. PubMed ID: 20566307 [TBL] [Abstract][Full Text] [Related]
6. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings. Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453 [TBL] [Abstract][Full Text] [Related]
7. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration. Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366 [TBL] [Abstract][Full Text] [Related]
8. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites. Zhang F; Chang J; Lu J; Lin K; Ning C Acta Biomater; 2007 Nov; 3(6):896-904. PubMed ID: 17625995 [TBL] [Abstract][Full Text] [Related]
13. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007 [TBL] [Abstract][Full Text] [Related]
14. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
15. Calcium phosphate cement scaffolds with PLGA fibers. Vasconcellos LA; dos Santos LA Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1032-40. PubMed ID: 23827539 [TBL] [Abstract][Full Text] [Related]
16. [The preparation, structure evaluation and preliminary application of biomimetic biphasic calcium phosphate scaffold]. Peng J; Wang AY; Sun MX; Xu WJ; Huang JX; Zhao B; Zhang L; Tian JM; Dong LM; Lu SB Zhonghua Wai Ke Za Zhi; 2005 Jun; 43(12):807-11. PubMed ID: 16083586 [TBL] [Abstract][Full Text] [Related]
17. An optimized beta-tricalcium phosphate and agarose scaffold fabrication technique. Román J; Cabañas MV; Peña J; Doadrio JC; Vallet-Regí M J Biomed Mater Res A; 2008 Jan; 84(1):99-107. PubMed ID: 17600331 [TBL] [Abstract][Full Text] [Related]
18. Surface modification of porous polycaprolactone/biphasic calcium phosphate scaffolds for bone regeneration in rat calvaria defect. Kim JH; Linh NT; Min YK; Lee BT J Biomater Appl; 2014 Oct; 29(4):624-35. PubMed ID: 24939961 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794 [TBL] [Abstract][Full Text] [Related]
20. HAp granules encapsulated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel for bone regeneration. Sarker A; Amirian J; Min YK; Lee BT Int J Biol Macromol; 2015 Nov; 81():898-911. PubMed ID: 26394381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]