These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 20709633)
21. Porous TiNbZr alloy scaffolds for biomedical applications. Wang X; Li Y; Xiong J; Hodgson PD; Wen C Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597 [TBL] [Abstract][Full Text] [Related]
22. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. Gorna K; Gogolewski S J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229 [TBL] [Abstract][Full Text] [Related]
23. Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly(lactic-co-glycolic acid). Miao X; Tan DM; Li J; Xiao Y; Crawford R Acta Biomater; 2008 May; 4(3):638-45. PubMed ID: 18054297 [TBL] [Abstract][Full Text] [Related]
24. Fabrication and characterization of novel nano hydroxyapatite/β-tricalcium phosphate scaffolds in three different composition ratios. Ebrahimi M; Pripatnanont P; Monmaturapoj N; Suttapreyasri S J Biomed Mater Res A; 2012 Sep; 100(9):2260-8. PubMed ID: 22499354 [TBL] [Abstract][Full Text] [Related]
25. An alternative technique to shape scaffolds with hierarchical porosity at physiological temperature. Peña J; Román J; Victoria Cabañas M; Vallet-Regí M Acta Biomater; 2010 Apr; 6(4):1288-96. PubMed ID: 19887122 [TBL] [Abstract][Full Text] [Related]
26. Influence of a novel calcium-phosphate coating on the mechanical properties of highly porous collagen scaffolds for bone repair. Al-Munajjed AA; O'Brien FJ J Mech Behav Biomed Mater; 2009 Apr; 2(2):138-46. PubMed ID: 19627817 [TBL] [Abstract][Full Text] [Related]
27. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related]
28. Low temperature fabrication of high strength porous calcium phosphate and the evaluation of the osteoconductivity. Yu X; Cai S; Xu G; Zhou W; Wang D J Mater Sci Mater Med; 2009 Oct; 20(10):2025-34. PubMed ID: 19424778 [TBL] [Abstract][Full Text] [Related]
29. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
30. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement. Alge DL; Chu TM J Biomed Mater Res A; 2010 Aug; 94(2):547-55. PubMed ID: 20186776 [TBL] [Abstract][Full Text] [Related]
31. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF. Amirian J; Linh NT; Min YK; Lee BT Int J Biol Macromol; 2015 May; 76():10-24. PubMed ID: 25709009 [TBL] [Abstract][Full Text] [Related]
32. Calcium phosphate scaffolds mimicking the gradient architecture of native long bones. Lindner M; Bergmann C; Telle R; Fischer H J Biomed Mater Res A; 2014 Oct; 102(10):3677-84. PubMed ID: 24307071 [TBL] [Abstract][Full Text] [Related]
33. Enhanced regeneration of the ligament-bone interface using a poly(L-lactide-co-ε-caprolactone) scaffold with local delivery of cells/BMP-2 using a heparin-based hydrogel. Lee J; Choi WI; Tae G; Kim YH; Kang SS; Kim SE; Kim SH; Jung Y; Kim SH Acta Biomater; 2011 Jan; 7(1):244-57. PubMed ID: 20801240 [TBL] [Abstract][Full Text] [Related]
34. Modified PHBV scaffolds by in situ UV polymerization: structural characteristic, mechanical properties and bone mesenchymal stem cell compatibility. Ke Y; Wang YJ; Ren L; Zhao QC; Huang W Acta Biomater; 2010 Apr; 6(4):1329-36. PubMed ID: 19853067 [TBL] [Abstract][Full Text] [Related]
35. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
36. Chitosan/biphasic calcium phosphate scaffolds functionalized with BMP-2-encapsulated nanoparticles and RGD for bone regeneration. Gan D; Liu M; Xu T; Wang K; Tan H; Lu X J Biomed Mater Res A; 2018 Oct; 106(10):2613-2624. PubMed ID: 29790251 [TBL] [Abstract][Full Text] [Related]
37. Fiber-enriched double-setting calcium phosphate bone cement. dos Santos LA; Carrodéguas RG; Boschi AO; Fonseca de Arruda AC J Biomed Mater Res A; 2003 May; 65(2):244-50. PubMed ID: 12734819 [TBL] [Abstract][Full Text] [Related]
38. Novel bioceramic-reinforced hydrogel for alveolar bone regeneration. Iviglia G; Cassinelli C; Torre E; Baino F; Morra M; Vitale-Brovarone C Acta Biomater; 2016 Oct; 44():97-109. PubMed ID: 27521494 [TBL] [Abstract][Full Text] [Related]
39. Characterization of mineralized collagen-glycosaminoglycan scaffolds for bone regeneration. Kanungo BP; Silva E; Van Vliet K; Gibson LJ Acta Biomater; 2008 May; 4(3):490-503. PubMed ID: 18294943 [TBL] [Abstract][Full Text] [Related]
40. [Preparation of chitosan-encapsulated porous calcium polyphosphate bioceramic]. Fan C; Liu D; Ren Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1355-8. PubMed ID: 18277683 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]