These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20709829)

  • 1. Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts.
    Kim J; Somers DE
    Plant Physiol; 2010 Oct; 154(2):611-21. PubMed ID: 20709829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Analysis of Circadian Phenotypes in Arabidopsis Protoplasts Transfected with a Luminescent Clock Reporter.
    Hansen LL; van Ooijen G
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27684315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Simple Protoplast-Based Method for Screening Potent Artificial miRNA for Maximal Gene Silencing in Arabidopsis.
    Zhang N; Zhang D; Li JF
    Curr Protoc Mol Biol; 2017 Jan; 117():26.9.1-26.9.10. PubMed ID: 28060406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered Artificial MicroRNA Precursors Facilitate Cloning and Gene Silencing in Arabidopsis and Rice.
    Zhang D; Zhang N; Shen W; Li JF
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Artificial MicroRNAs for Multiplex Gene Silencing and Simplified Transgenic Screen.
    Zhang N; Zhang D; Chen SL; Gong BQ; Guo Y; Xu L; Zhang XN; Li JF
    Plant Physiol; 2018 Nov; 178(3):989-1001. PubMed ID: 30291175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts.
    Wang S; Tiwari SB; Hagen G; Guilfoyle TJ
    Plant Cell; 2005 Jul; 17(7):1979-93. PubMed ID: 15923351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants.
    Li JF; Chung HS; Niu Y; Bush J; McCormack M; Sheen J
    Plant Cell; 2013 May; 25(5):1507-22. PubMed ID: 23645631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioluminescent Monitoring of Circadian Rhythms in Isolated Mesophyll Cells of Arabidopsis at Single-Cell Level.
    Nakamura S; Oyama T
    Methods Mol Biol; 2022; 2525():395-405. PubMed ID: 35836086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Arabidopsis Protoplasts to Study Cellular Responses to Environmental Stress.
    Confraria A; Baena-González E
    Methods Mol Biol; 2016; 1398():247-69. PubMed ID: 26867629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfection assays with protoplasts containing integrated reporter genes.
    Tiwari S; Wang S; Hagen G; Guilfoyle TJ
    Methods Mol Biol; 2006; 323():237-44. PubMed ID: 16739582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term monitoring of bioluminescence circadian rhythms of cells in a transgenic
    Nakamura S; Oyama T
    Plant Biotechnol (Tokyo); 2018 Sep; 35(3):291-295. PubMed ID: 31819736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis.
    Carbonell A; Takeda A; Fahlgren N; Johnson SC; Cuperus JT; Carrington JC
    Plant Physiol; 2014 May; 165(1):15-29. PubMed ID: 24647477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis.
    Portolés S; Más P
    PLoS Genet; 2010 Nov; 6(11):e1001201. PubMed ID: 21079791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for the construction of plant amiRNA expression vectors.
    Yan H; Deng X; Cao Y; Huang J; Ma L; Zhao B
    J Biotechnol; 2011 Jan; 151(1):9-14. PubMed ID: 21040750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis.
    Sugano S; Andronis C; Ong MS; Green RM; Tobin EM
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12362-6. PubMed ID: 10535927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A genomic-scale artificial microRNA library as a tool to investigate the functionally redundant gene space in Arabidopsis.
    Hauser F; Chen W; Deinlein U; Chang K; Ossowski S; Fitz J; Hannon GJ; Schroeder JI
    Plant Cell; 2013 Aug; 25(8):2848-63. PubMed ID: 23956262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Specific gene silencing of At1g13770 and At2g23470 by artificial mi-croRNAs in Arabidopsis].
    Li WC; Zhao SQ
    Yi Chuan; 2012 Mar; 34(3):348-55. PubMed ID: 22425954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.
    Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W
    Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-efficiency gene silencing in plants using two-hit asymmetrical artificial MicroRNAs.
    Teotia S; Wang X; Zhou N; Wang M; Liu H; Qin J; Han D; Li C; Li CE; Pan S; Tang H; Kang W; Zhang Z; Tang X; Peng T; Tang G
    Plant Biotechnol J; 2023 Sep; 21(9):1799-1811. PubMed ID: 37392408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation.
    Bhagwat B; Chi M; Su L; Tang H; Tang G; Xiang Y
    J Genet Genomics; 2013 May; 40(5):261-70. PubMed ID: 23706301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.