These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 20709933)

  • 41. Whole-body kinematics of a fruit bat reveal the influence of wing inertia on body accelerations.
    Iriarte-Díaz J; Riskin DK; Willis DJ; Breuer KS; Swartz SM
    J Exp Biol; 2011 May; 214(Pt 9):1546-53. PubMed ID: 21490262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuromuscular control of aerodynamic forces and moments in the blowfly, Calliphora vicina.
    Balint CN; Dickinson MH
    J Exp Biol; 2004 Oct; 207(Pt 22):3813-38. PubMed ID: 15472014
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.
    Aono H; Liang F; Liu H
    J Exp Biol; 2008 Jan; 211(Pt 2):239-57. PubMed ID: 18165252
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2007 Jun; 210(Pt 11):1912-24. PubMed ID: 17515417
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
    Cheng B; Deng X; Hedrick TL
    J Exp Biol; 2011 Dec; 214(Pt 24):4092-106. PubMed ID: 22116752
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta.
    Kim JK; Han JH
    Bioinspir Biomim; 2014 Mar; 9(1):016011. PubMed ID: 24451177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The control of flight force by a flapping wing: lift and drag production.
    Sane SP; Dickinson MH
    J Exp Biol; 2001 Aug; 204(Pt 15):2607-26. PubMed ID: 11533111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of torsional stiffness and inertia on the dynamics of low aspect ratio flapping wings.
    Xiao Q; Hu J; Liu H
    Bioinspir Biomim; 2014 Mar; 9(1):016008. PubMed ID: 24434625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel mechanism for emulating insect wing kinematics.
    Seshadri P; Benedict M; Chopra I
    Bioinspir Biomim; 2012 Sep; 7(3):036017. PubMed ID: 22677520
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biofluiddynamic scaling of flapping, spinning and translating fins and wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2691-704. PubMed ID: 19648414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aerial locomotion in flies and robots: kinematic control and aerodynamics of oscillating wings.
    Lehmann FO
    Arthropod Struct Dev; 2004 Jul; 33(3):331-45. PubMed ID: 18089042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control for small-speed lateral flight in a model insect.
    Zhang YL; Sun M
    Bioinspir Biomim; 2011 Sep; 6(3):036003. PubMed ID: 21775781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of outer wing separation on lift and thrust generation in a flapping wing system.
    Mahardika N; Viet NQ; Park HC
    Bioinspir Biomim; 2011 Sep; 6(3):036006. PubMed ID: 21852715
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vortexlet models of flapping flexible wings show tuning for force production and control.
    Mountcastle AM; Daniel TL
    Bioinspir Biomim; 2010 Dec; 5(4):045005. PubMed ID: 21098955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unsteady aerodynamics of insect flight.
    Ellington CP
    Symp Soc Exp Biol; 1995; 49():109-29. PubMed ID: 8571220
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight.
    Sane SP; Dickinson MH
    J Exp Biol; 2002 Apr; 205(Pt 8):1087-96. PubMed ID: 11919268
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of structural flexibility of wings in flapping flight of butterfly.
    Senda K; Obara T; Kitamura M; Yokoyama N; Hirai N; Iima M
    Bioinspir Biomim; 2012 Jun; 7(2):025002. PubMed ID: 22617048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.