These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 20710069)

  • 1. Differential pressure measurement using a free-flying insect-like ornithopter with an MEMS sensor.
    Takahashi H; Aoyama Y; Ohsawa K; Tanaka H; Iwase E; Matsumoto K; Shimoyama I
    Bioinspir Biomim; 2010 Sep; 5(3):036005. PubMed ID: 20710069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential pressure distribution measurement with an MEMS sensor on a free-flying butterfly wing.
    Takahashi H; Tanaka H; Matsumoto K; Shimoyama I
    Bioinspir Biomim; 2012 Sep; 7(3):036020. PubMed ID: 22711175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induced airflow in flying insects II. Measurement of induced flow.
    Sane SP; Jacobson NP
    J Exp Biol; 2006 Jan; 209(Pt 1):43-56. PubMed ID: 16354777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power distribution in the hovering flight of the hawk moth Manduca sexta.
    Zhao L; Deng X
    Bioinspir Biomim; 2009 Dec; 4(4):046003. PubMed ID: 19920311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward flight of swallowtail butterfly with simple flapping motion.
    Tanaka H; Shimoyama I
    Bioinspir Biomim; 2010 Jun; 5(2):026003. PubMed ID: 20484782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles.
    Shang JK; Combes SA; Finio BM; Wood RJ
    Bioinspir Biomim; 2009 Sep; 4(3):036002. PubMed ID: 19713572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The morphological characterization of the forewing of the Manduca sexta species for the application of biomimetic flapping wing micro air vehicles.
    O'Hara RP; Palazotto AN
    Bioinspir Biomim; 2012 Dec; 7(4):046011. PubMed ID: 23093001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vortexlet models of flapping flexible wings show tuning for force production and control.
    Mountcastle AM; Daniel TL
    Bioinspir Biomim; 2010 Dec; 5(4):045005. PubMed ID: 21098955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic characteristics of flying fish in gliding flight.
    Park H; Choi H
    J Exp Biol; 2010 Oct; 213(Pt 19):3269-79. PubMed ID: 20833919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
    de Margerie E; Mouret JB; Doncieux S; Meyer JA
    Bioinspir Biomim; 2007 Dec; 2(4):65-82. PubMed ID: 18037730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conceptual design of flapping-wing micro air vehicles.
    Whitney JP; Wood RJ
    Bioinspir Biomim; 2012 Sep; 7(3):036001. PubMed ID: 22498507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leading-edge vortex improves lift in slow-flying bats.
    Muijres FT; Johansson LC; Barfield R; Wolf M; Spedding GR; Hedenström A
    Science; 2008 Feb; 319(5867):1250-3. PubMed ID: 18309085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing.
    Ishihara D; Yamashita Y; Horie T; Yoshida S; Niho T
    J Exp Biol; 2009 Dec; 212(Pt 23):3882-91. PubMed ID: 19915131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic pressure maps for wings and tails of pigeons in slow, flapping flight, and their energetic implications.
    Usherwood JR; Hedrick TL; McGowan CP; Biewener AA
    J Exp Biol; 2005 Jan; 208(Pt 2):355-69. PubMed ID: 15634854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle.
    Nakata T; Liu H; Tanaka Y; Nishihashi N; Wang X; Sato A
    Bioinspir Biomim; 2011 Dec; 6(4):045002. PubMed ID: 22126793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untethered hovering flapping flight of a 3D-printed mechanical insect.
    Richter C; Lipson H
    Artif Life; 2011; 17(2):73-86. PubMed ID: 21370958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.