These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2071151)

  • 1. BIS 1, a major component of the cereal genome and a tool for studying genomic organization.
    Moore G; Cheung W; Schwarzacher T; Flavell R
    Genomics; 1991 Jun; 10(2):469-76. PubMed ID: 2071151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of a highly repeated DNA sequence in Hordeum vulgare L.
    Liu K; Somerville S
    Genome; 1996 Dec; 39(6):1159-68. PubMed ID: 8983185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structural and evolutionary analysis of a dispersed repetitive sequence.
    Hueros G; Loarce Y; Ferrer E
    Plant Mol Biol; 1993 Jul; 22(4):635-43. PubMed ID: 8343599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The genomic organization and localization on the chromosomes of the HvRT family of DNA repetitive sequences in barley].
    Belostotskiĭ DA; Kolchinskiĭ AM; Anan'ev EV
    Tsitol Genet; 1990; 24(4):57-61. PubMed ID: 2238105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic organization, evolution, and structural peculiarities of highly repetitive DNA of Hordeum vulgare.
    Vershinin AV; Salina EA; Solovyov VV; Timofeyeva LL
    Genome; 1990 Jun; 33(3):441-9. PubMed ID: 2384209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of yeast artificial chromosomes containing barley DNA and the identification of clones carrying copies of the repeated element BIS-1.
    Dunford R; Rogner UC
    Hereditas; 1991; 115(2):133-8. PubMed ID: 1810906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization and chromosome location of repeated DNA sequences in Hordeum species and in the amphiploid tritordeum (x Tritordeum Ascherson et Graebner).
    Ferrer E; Loarce Y; Hueros G
    Genome; 1995 Oct; 38(5):850-7. PubMed ID: 8536999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The cloning of "residual" DNA and the determination of the primary structure for the fragments of the barley-specific family of tandem repetitive sequences].
    Belostotskiĭ DA; Mil'shina NV; Anan'ev EV
    Tsitol Genet; 1990; 24(3):44-50. PubMed ID: 2238099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AT repeats in barely genome.
    Ermak GZ; Prosnyak MI; Vecher AA; Kartel NA
    FEBS Lett; 1990 Oct; 272(1-2):193-6. PubMed ID: 1977618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Interspecies variability in the organization of repeated sequences of the genus Hordeum].
    Salina EA; Timofeeva LL; Vershinin AV
    Genetika; 1989 Apr; 25(4):595-604. PubMed ID: 2759442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes.
    Gu YQ; Anderson OD; Londeorë CF; Kong X; Chibbar RN; Lazo GR
    Genome; 2003 Dec; 46(6):1084-97. PubMed ID: 14663527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats.
    Wicker T; Narechania A; Sabot F; Stein J; Vu GT; Graner A; Ware D; Stein N
    BMC Genomics; 2008 Oct; 9():518. PubMed ID: 18976483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of genome-specific DNA sequences in Triticeae species.
    Anamthawat-Jónsson K; Heslop-Harrison JS
    Mol Gen Genet; 1993 Aug; 240(2):151-8. PubMed ID: 8355649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley.
    La Rota M; Kantety RV; Yu JK; Sorrells ME
    BMC Genomics; 2005 Feb; 6():23. PubMed ID: 15720707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Genome organization and primary structure of the BamHI fragment of highly repetitive DNA from Hordeum vulgare].
    Salina EA; Solov'ev VV; Gulevich VV; Vershinin AV
    Mol Biol (Mosk); 1990; 24(3):729-35. PubMed ID: 2402238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A whole-genome snapshot of 454 sequences exposes the composition of the barley genome and provides evidence for parallel evolution of genome size in wheat and barley.
    Wicker T; Taudien S; Houben A; Keller B; Graner A; Platzer M; Stein N
    Plant J; 2009 Sep; 59(5):712-22. PubMed ID: 19453446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two ubiquitin-long-tail fusion genes arranged as closely spaced direct repeats in barley.
    Gausing K; Jensen CB
    Gene; 1990 Oct; 94(2):165-71. PubMed ID: 1701748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A direct repeat sequence associated with the centromeric retrotransposons in wheat.
    Ito H; Nasuda S; Endo TR
    Genome; 2004 Aug; 47(4):747-56. PubMed ID: 15284880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key features of cereal genome organization as revealed by the use of cytosine methylation-sensitive restriction endonucleases.
    Moore G; Abbo S; Cheung W; Foote T; Gale M; Koebner R; Leitch A; Leitch I; Money T; Stancombe P
    Genomics; 1993 Mar; 15(3):472-82. PubMed ID: 8468041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly repetitive DNA sequences in cyanobacterial genomes.
    Mazel D; Houmard J; Castets AM; Tandeau de Marsac N
    J Bacteriol; 1990 May; 172(5):2755-61. PubMed ID: 2110150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.