BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20711535)

  • 1. Detection of enzyme activities based on the synthesis of gold nanoparticles in HEPES buffer.
    Serizawa T; Hirai Y; Aizawa M
    Mol Biosyst; 2010 Sep; 6(9):1565-8. PubMed ID: 20711535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel synthetic route to peptide-capped gold nanoparticles.
    Serizawa T; Hirai Y; Aizawa M
    Langmuir; 2009 Oct; 25(20):12229-34. PubMed ID: 19769351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal synthesis and properties of controlled α-Fe2O3 nanostructures in HEPES solution.
    Li H; Lu Z; Li Q; So MH; Che CM; Chen R
    Chem Asian J; 2011 Sep; 6(9):2320-31. PubMed ID: 21661117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer.
    So MH; Ho CM; Chen R; Che CM
    Chem Asian J; 2010 Jun; 5(6):1322-31. PubMed ID: 20512785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly selective fluorescence turn-on sensing of gold ions by a nanoparticle generation/C-I bond cleavage sequence.
    Park J; Choi S; Kim TI; Kim Y
    Analyst; 2012 Oct; 137(19):4411-4. PubMed ID: 22866326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative DNA damage induced by HEPES (2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid) buffer in the presence of Au(III).
    Habib A; Tabata M
    J Inorg Biochem; 2004 Nov; 98(11):1696-702. PubMed ID: 15522397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive enzyme-catalytic nanogold-resonance scattering spectral assay for alkaline phosphate.
    Jiang Z; Wu M; Liu G; Liang A
    Bioprocess Biosyst Eng; 2012 Jun; 35(5):781-7. PubMed ID: 22113359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation.
    Zhao W; Chiuman W; Lam JC; Brook MA; Li Y
    Chem Commun (Camb); 2007 Sep; (36):3729-31. PubMed ID: 17851609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simple and rapid detection of L-Dopa decarboxylase activity using gold nanoparticles.
    Park SY; Kwon D; Mok H; Chung BH
    Analyst; 2013 Jun; 138(11):3146-9. PubMed ID: 23596625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combinatorial approach toward fabrication of surface-adsorbed metal nanoparticles for investigation of an enzyme reaction.
    Takei H; Yamaguchi T
    Phys Chem Chem Phys; 2010 May; 12(17):4505-14. PubMed ID: 20407725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of alkaline phosphatase using surface-enhanced Raman spectroscopy.
    Ruan C; Wang W; Gu B
    Anal Chem; 2006 May; 78(10):3379-84. PubMed ID: 16689540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The synthesis of SERS-active gold nanoflower tags for in vivo applications.
    Xie J; Zhang Q; Lee JY; Wang DI
    ACS Nano; 2008 Dec; 2(12):2473-80. PubMed ID: 19206281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of positively charged silver nanoparticles via photoreduction of AgNO3 in branched polyethyleneimine/HEPES solutions.
    Tan S; Erol M; Attygalle A; Du H; Sukhishvili S
    Langmuir; 2007 Sep; 23(19):9836-43. PubMed ID: 17705409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminopyrazole-based ligand induces gold nanoparticle formation and remains available for heavy metal ions sensing. A simple "mix and detect" approach.
    Aragay G; Pons J; Ros J; Merkoçi A
    Langmuir; 2010 Jun; 26(12):10165-70. PubMed ID: 20373783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosensor for multiplex detection of two DNA target sequences using enzyme-functionalized Au nanoparticles as signal amplification.
    Li XM; Fu PY; Liu JM; Zhang SS
    Anal Chim Acta; 2010 Jul; 673(2):133-8. PubMed ID: 20599026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time fluorescence assays of alkaline phosphatase and ATP sulfurylase activities based on a novel PPi fluorescent probe.
    Wang X; Zhang Z; Ma X; Wen J; Geng Z; Wang Z
    Talanta; 2015 May; 137():156-60. PubMed ID: 25770619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart nanoprobes for the detection of alkaline phosphatase activity during osteoblast differentiation.
    Lim EK; Keem JO; Yun HS; Jung J; Chung BH
    Chem Commun (Camb); 2015 Feb; 51(15):3270-2. PubMed ID: 25623488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of zeatin with gold ions and biomimetic formation of gold complexes and nanoparticles.
    Fowles CC; Smoak EM; Banerjee IA
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):250-8. PubMed ID: 20392614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing phosphatase activity using redox active nanoparticles: a novel colorimetric approach for the detection of enzyme activity.
    Hayat A; Gonca Bulbul ; Andreescu S
    Biosens Bioelectron; 2014 Jun; 56():334-9. PubMed ID: 24531308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and activity of apoferritin-stabilized gold nanoparticles.
    Zhang L; Swift J; Butts CA; Yerubandi V; Dmochowski IJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1719-29. PubMed ID: 17723241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.