These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 20711780)

  • 41. [Present Situation of Wind Turbine in Major European Countries and Outlook of Wind Turbine in Japan].
    Morimatsu Y
    Nihon Eiseigaku Zasshi; 2018; 73(3):278-283. PubMed ID: 30270294
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R
    Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Utilization Probability Map for Migrating Bald Eagles in Northeastern North America: A Tool for Siting Wind Energy Facilities and Other Flight Hazards.
    Mojica EK; Watts BD; Turrin CL
    PLoS One; 2016; 11(6):e0157807. PubMed ID: 27336482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of Griffon Vulture's Flight Types Using High-Resolution Tracking Data.
    Khosravifard S; Venus V; Skidmore AK; Bouten W; Muñoz AR; Toxopeus AG
    Int J Environ Res; 2018; 12(3):313-325. PubMed ID: 31007688
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models.
    Korner-Nievergelt F; Brinkmann R; Niermann I; Behr O
    PLoS One; 2013; 8(7):e67997. PubMed ID: 23844144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures.
    Duriez O; Kato A; Tromp C; Dell'Omo G; Vyssotski AL; Sarrazin F; Ropert-Coudert Y
    PLoS One; 2014; 9(1):e84887. PubMed ID: 24454760
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Why Do Kestrels Soar?
    Hernández-Pliego J; Rodríguez C; Bustamante J
    PLoS One; 2015; 10(12):e0145402. PubMed ID: 26689780
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A mechanical model of wing and theoretical estimate of taper factor for three gliding birds.
    Zahedi MS; Khan MY
    J Biosci; 2007 Mar; 32(2):351-61. PubMed ID: 17435326
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A utilization distribution for the global population of Cape Vultures (Gyps coprotheres) to guide wind energy development.
    Cervantes F; Murgatroyd M; Allan DG; Farwig N; Kemp R; Krüger S; Maude G; Mendelsohn J; Rösner S; Schabo DG; Tate G; Wolter K; Amar A
    Ecol Appl; 2023 Apr; 33(3):e2809. PubMed ID: 36691259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessing risk to birds from industrial wind energy development via paired resource selection models.
    Miller TA; Brooks RP; Lanzone M; Brandes D; Cooper J; O'Malley K; Maisonneuve C; Tremblay J; Duerr A; Katzner T
    Conserv Biol; 2014 Jun; 28(3):745-55. PubMed ID: 24405249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Constant and seasonal drivers of bird communities in a wind farm: implications for conservation.
    Rosin ZM; Skórka P; Szymański P; Tobolka M; Luczak A; Tryjanowski P
    PeerJ; 2016; 4():e2105. PubMed ID: 27547516
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The pattern of complaints about Australian wind farms does not match the establishment and distribution of turbines: support for the psychogenic, 'communicated disease' hypothesis.
    Chapman S; St George A; Waller K; Cakic V
    PLoS One; 2013; 8(10):e76584. PubMed ID: 24146893
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bird orientation: compensation for wind drift in migrating raptors is age dependent.
    Thorup K; Alerstam T; Hake M; Kjellén N
    Proc Biol Sci; 2003 Aug; 270 Suppl 1(Suppl 1):S8-11. PubMed ID: 12952622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Developing an efficient protocol for monitoring eagle fatalities at wind energy facilities.
    Hallingstad EC; Rabie PA; Telander AC; Roppe JA; Nagy LR
    PLoS One; 2018; 13(12):e0208700. PubMed ID: 30540840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mapping seabird sensitivity to offshore wind farms.
    Bradbury G; Trinder M; Furness B; Banks AN; Caldow RW; Hume D
    PLoS One; 2014; 9(9):e106366. PubMed ID: 25210739
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Migratory flight strategies of Levant sparrowhawks: time or energy minimization?
    Spaar R; Stark H; Liechti F
    Anim Behav; 1998 Nov; 56(5):1185-1197. PubMed ID: 9819335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Doubly fed induction generator wind turbines with fuzzy controller: a survey.
    Sathiyanarayanan JS; Kumar AS
    ScientificWorldJournal; 2014; 2014():252645. PubMed ID: 25028677
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Black kites of different age and sex show similar avoidance responses to wind turbines during migration.
    Santos CD; Ferraz R; Muñoz AR; Onrubia A; Wikelski M
    R Soc Open Sci; 2021 Jan; 8(1):201933. PubMed ID: 33614101
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds.
    Masden EA; Haydon DT; Fox AD; Furness RW
    Mar Pollut Bull; 2010 Jul; 60(7):1085-91. PubMed ID: 20188382
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of tower base painting on willow ptarmigan collision rates with wind turbines.
    Stokke BG; Nygård T; Falkdalen U; Pedersen HC; May R
    Ecol Evol; 2020 Jun; 10(12):5670-5679. PubMed ID: 32607182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.