BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 20712367)

  • 1. Innovative high-surface-area CuO pretreated cotton effective in bacterial inactivation under visible light.
    Torres A; Ruales C; Pulgarin C; Aimable A; Bowen P; Sarria V; Kiwi J
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2547-52. PubMed ID: 20712367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial effect of apatite-coated titanium dioxide for textiles applications.
    Kangwansupamonkon W; Lauruengtana V; Surassmo S; Ruktanonchai U
    Nanomedicine; 2009 Jun; 5(2):240-9. PubMed ID: 19223243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative TiO2/Cu nanosurfaces inactivating bacteria in the minute range under low-intensity actinic light.
    Baghriche O; Rtimi S; Pulgarin C; Sanjines R; Kiwi J
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5234-40. PubMed ID: 23020183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated Escherichia coli inactivation in the dark on uniform copper flexible surfaces.
    Rtimi S; Sanjines R; Bensimon M; Pulgarin C; Kiwi J
    Biointerphases; 2014 Jun; 9(2):029012. PubMed ID: 24985216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light.
    Alhussein A; Achache S; Deturche R; Sanchette F; Pulgarin C; Kiwi J; Rtimi S
    Colloids Surf B Biointerfaces; 2017 Apr; 152():152-158. PubMed ID: 28107706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic storing of O2 as H2O2 mediated by high surface area CuO. Evidence for a reductive-oxidative interfacial mechanism.
    Bandara J; Guasaquillo I; Bowen P; Soare L; Jardim WF; Kiwi J
    Langmuir; 2005 Aug; 21(18):8554-9. PubMed ID: 16114971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrophobic antibacterial cotton textiles.
    Shateri Khalil-Abad M; Yazdanshenas ME
    J Colloid Interface Sci; 2010 Nov; 351(1):293-8. PubMed ID: 20709327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial activity of cloth functionalized with N-alkylated poly(4-vinylpyridine).
    Cen L; Neoh KG; Kang ET
    J Biomed Mater Res A; 2004 Oct; 71(1):70-80. PubMed ID: 15368256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials.
    Jing H; Yu Z; Li L
    J Biomed Mater Res A; 2008 Oct; 87(1):33-7. PubMed ID: 18080302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiaction antibacterial nanofibrous membranes fabricated by electrospinning: an excellent system for antibacterial applications.
    Wu Y; Jia W; An Q; Liu Y; Chen J; Li G
    Nanotechnology; 2009 Jun; 20(24):245101. PubMed ID: 19468171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of antibacterial copper releasing degradable phosphate glass fibres.
    Neel EA; Ahmed I; Pratten J; Nazhat SN; Knowles JC
    Biomaterials; 2005 May; 26(15):2247-54. PubMed ID: 15585226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films.
    Ehiasarian A; Pulgarin C; Kiwi J
    Environ Sci Pollut Res Int; 2012 Nov; 19(9):3791-7. PubMed ID: 23054741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic antimicrobial activity of thin surface films of TiO(2), CuO and TiO (2)/CuO dual layers on Escherichia coli and bacteriophage T4.
    Ditta IB; Steele A; Liptrot C; Tobin J; Tyler H; Yates HM; Sheel DW; Foster HA
    Appl Microbiol Biotechnol; 2008 May; 79(1):127-33. PubMed ID: 18317747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triazinyl porphyrin-based photoactive cotton fabrics: preparation, characterization, and antibacterial activity.
    Ringot C; Sol V; Barrière M; Saad N; Bressollier P; Granet R; Couleaud P; Frochot C; Krausz P
    Biomacromolecules; 2011 May; 12(5):1716-23. PubMed ID: 21438501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation.
    Kim JY; Lee C; Cho M; Yoon J
    Water Res; 2008 Jan; 42(1-2):356-62. PubMed ID: 17692890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water.
    Sapkota A; Anceno AJ; Baruah S; Shipin OV; Dutta J
    Nanotechnology; 2011 May; 22(21):215703. PubMed ID: 21451231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-halamine/quat siloxane copolymers for use in biocidal coatings.
    Liang J; Chen Y; Barnes K; Wu R; Worley SD; Huang TS
    Biomaterials; 2006 Apr; 27(11):2495-501. PubMed ID: 16352336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity.
    Hassan MS; Amna T; Yang OB; El-Newehy MH; Al-Deyab SS; Khil MS
    Colloids Surf B Biointerfaces; 2012 Sep; 97():201-6. PubMed ID: 22609604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.
    Rtimi S; Sanjines R; Pulgarin C; Kiwi J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):47-55. PubMed ID: 26699928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Template-free synthesis of mesoporous CuO dandelion structures for optoelectronic applications.
    Manna S; Das K; De SK
    ACS Appl Mater Interfaces; 2010 May; 2(5):1536-42. PubMed ID: 20438059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.