These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 20712989)

  • 1. Tectorial membrane morphological variation: effects upon stimulus frequency otoacoustic emissions.
    Bergevin C; Velenovsky DS; Bonine KE
    Biophys J; 2010 Aug; 99(4):1064-72. PubMed ID: 20712989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae.
    Wit HP; van Dijk P; Manley GA
    J Acoust Soc Am; 2012 Nov; 132(5):3273-9. PubMed ID: 23145611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What have lizard ears taught us about auditory physiology?
    Manley GA; Köppl C
    Hear Res; 2008 Apr; 238(1-2):3-11. PubMed ID: 17983712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salient features of otoacoustic emissions are common across tetrapod groups and suggest shared properties of generation mechanisms.
    Bergevin C; Manley GA; Köppl C
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3362-7. PubMed ID: 25737537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filtering of distortion-product otoacoustic emissions in the inner ear of birds and lizards.
    Taschenberger G; Gallo L; Manley GA
    Hear Res; 1995 Nov; 91(1-2):87-92. PubMed ID: 8647729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent reflection without traveling waves: on the origin of long-latency otoacoustic emissions in lizards.
    Bergevin C; Shera CA
    J Acoust Soc Am; 2010 Apr; 127(4):2398-409. PubMed ID: 20370023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous Otoacoustic Emissions in
    Cheatham MA; Zhou Y; Goodyear RJ; Dallos P; Richardson GP
    eNeuro; 2018; 5(6):. PubMed ID: 30627650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of otoacoustic emissions within gecko subfamilies: morphological implications for auditory function in lizards.
    Bergevin C
    J Assoc Res Otolaryngol; 2011 Apr; 12(2):203-17. PubMed ID: 21136278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous otoacoustic emissions in the bobtail lizard. I: General characteristics.
    Köppl C; Manley GA
    Hear Res; 1993 Dec; 71(1-2):157-69. PubMed ID: 8113134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of the tectorial membrane protein CEACAM16 enhances spontaneous, stimulus-frequency, and transiently evoked otoacoustic emissions.
    Cheatham MA; Goodyear RJ; Homma K; Legan PK; Korchagina J; Naskar S; Siegel JH; Dallos P; Zheng J; Richardson GP
    J Neurosci; 2014 Jul; 34(31):10325-38. PubMed ID: 25080593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing tectorial membrane viscoelasticity enhances spontaneous otoacoustic emissions and compromises the detection of low level sound.
    Bowling T; Lemons C; Meaud J
    Sci Rep; 2019 May; 9(1):7494. PubMed ID: 31097743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects.
    Cheatham MA
    Hear Res; 2021 Feb; 400():108143. PubMed ID: 33340968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua.
    Manley GA; Yates GK; Köppl C
    Hear Res; 1988 May; 33(2):181-9. PubMed ID: 3397328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans.
    Bergevin C; Fulcher A; Richmond S; Velenovsky D; Lee J
    Hear Res; 2012 Mar; 285(1-2):20-8. PubMed ID: 22509533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing cochlear tuning and tonotopy in the tiger using otoacoustic emissions.
    Bergevin C; Walsh EJ; McGee J; Shera CA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Aug; 198(8):617-24. PubMed ID: 22645048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of distortion product otoacoustic emissions and neural suppression tuning curves attributable to the tectorial membrane resonance.
    Lukashkin AN; Smith JK; Russell IJ
    J Acoust Soc Am; 2007 Jan; 121(1):337-43. PubMed ID: 17297788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship Between Behavioral and Stimulus Frequency Otoacoustic Emissions Delay-Based Tuning Estimates.
    Wilson US; Browning-Kamins J; Boothalingam S; Moleti A; Sisto R; Dhar S
    J Speech Lang Hear Res; 2020 Jun; 63(6):1958-1968. PubMed ID: 32464079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanics of the frog ear.
    Van Dijk P; Mason MJ; Schoffelen RL; Narins PM; Meenderink SW
    Hear Res; 2011 Mar; 273(1-2):46-58. PubMed ID: 20149854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product otoacoustic emissions provide clues hearing mechanisms in the frog ear.
    Vassilakis PN; Meenderink SW; Narins PM
    J Acoust Soc Am; 2004 Dec; 116(6):3713-26. PubMed ID: 15658721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.