BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20713026)

  • 21. Biocompatibility of silicon-based arrays of electrodes coupled to organotypic hippocampal brain slice cultures.
    Kristensen BW; Noraberg J; Thiébaud P; Koudelka-Hep M; Zimmer J
    Brain Res; 2001 Mar; 896(1-2):1-17. PubMed ID: 11277967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices.
    Kovács R; Rabanus A; Otáhal J; Patzak A; Kardos J; Albus K; Heinemann U; Kann O
    J Neurosci; 2009 Jul; 29(26):8565-77. PubMed ID: 19571147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidics and multielectrode array-compatible organotypic slice culture method.
    Berdichevsky Y; Sabolek H; Levine JB; Staley KJ; Yarmush ML
    J Neurosci Methods; 2009 Mar; 178(1):59-64. PubMed ID: 19100768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microelectrode array analysis of hippocampal network dynamics following theta-burst stimulation via current source density reconstruction by Gaussian interpolation.
    Kim HB; Oh TI; Swanberg KM; Lee MB; Kim TW; Woo EJ; Park JH; Kwon OI
    J Neurosci Methods; 2016 May; 264():1-10. PubMed ID: 26880160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatio-temporal characterization of causal electrophysiological activity stimulated by single pulse focused ultrasound: an
    Suarez-Castellanos IM; Dossi E; Vion-Bailly J; Salette L; Chapelon JY; Carpentier A; Huberfeld G; N'Djin WA
    J Neural Eng; 2021 Mar; 18(2):. PubMed ID: 33494078
    [No Abstract]   [Full Text] [Related]  

  • 26. Microdialysis monitoring of extracellular glutamate combined with the simultaneous recording of evoked field potentials in hippocampal organotypic slice cultures.
    Robert F; Parisi L; Bert L; Renaud B; Stoppini L
    J Neurosci Methods; 1997 Jun; 74(1):65-76. PubMed ID: 9210576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular substrates for epileptiform activity induced by repeated tetanic stimulation in hippocampal slices.
    Kojima H; Kowada M; Katsuta Y
    Neurol Med Chir (Tokyo); 1989 Jan; 29(1):1-5. PubMed ID: 2472557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multisite hippocampal slice recording and stimulation using a 32 element microelectrode array.
    Novak JL; Wheeler BC
    J Neurosci Methods; 1988 Mar; 23(2):149-59. PubMed ID: 3357355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ex vivo model of epilepsy in organotypic slices-a new tool for drug screening.
    Magalhães DM; Pereira N; Rombo DM; Beltrão-Cavacas C; Sebastião AM; Valente CA
    J Neuroinflammation; 2018 Jul; 15(1):203. PubMed ID: 29996878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two-dimensional current source density analysis of propagation delays for components of epileptiform bursts in rat hippocampal slices.
    Novak JL; Wheeler BC
    Brain Res; 1989 Sep; 497(2):223-30. PubMed ID: 2819422
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High oxygen tension leads to acute cell death in organotypic hippocampal slice cultures.
    Pomper JK; Graulich J; Kovacs R; Hoffmann U; Gabriel S; Heinemann U
    Brain Res Dev Brain Res; 2001 Jan; 126(1):109-16. PubMed ID: 11172892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new extracellular multirecording system for electrophysiological studies: application to hippocampal organotypic cultures.
    Stoppini L; Duport S; Corrèges P
    J Neurosci Methods; 1997 Mar; 72(1):23-33. PubMed ID: 9128164
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Propagation velocity of epileptiform activity in the hippocampus.
    Holsheimer J; Lopes da Silva FH
    Exp Brain Res; 1989; 77(1):69-78. PubMed ID: 2551714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Network activity in hippocampal slice cultures revealed by long-term in vitro recordings.
    Albus K; Heinemann U; Kovács R
    J Neurosci Methods; 2013 Jul; 217(1-2):1-8. PubMed ID: 23639918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The stability of the hippocampal slice preparation: an electrophysiological and ultrastructural analysis.
    Schurr A; Reid KH; Tseng MT; Edmonds HL
    Brain Res; 1984 Apr; 297(2):357-62. PubMed ID: 6326943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional tolerance to mechanical deformation developed from organotypic hippocampal slice cultures.
    Kang WH; Morrison B
    Biomech Model Mechanobiol; 2015 Jun; 14(3):561-75. PubMed ID: 25236799
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution multitransistor array recording of electrical field potentials in cultured brain slices.
    Hutzler M; Lambacher A; Eversmann B; Jenkner M; Thewes R; Fromherz P
    J Neurophysiol; 2006 Sep; 96(3):1638-45. PubMed ID: 16687618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel dual mode microelectrode array for neuroelectrical and neurochemical recording in vitro.
    Song Y; Lin N; Liu C; Jiang H; Xing G; Cai X
    Biosens Bioelectron; 2012; 38(1):416-20. PubMed ID: 22672764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantification and automatized adaptive detection of in vivo and in vitro neuronal bursts based on signal complexity.
    Kapucu FE; Mikkonen JE; Tanskanen JM; Hyttinen JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4729-32. PubMed ID: 26737350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term stimulation of mouse hippocampal slice culture on microelectrode array.
    van Bergen A; Papanikolaou T; Schuker A; Möller A; Schlosshauer B
    Brain Res Brain Res Protoc; 2003 May; 11(2):123-33. PubMed ID: 12738008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.