BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20713026)

  • 41. Periodicity and directionality in the propagation of epileptiform discharges across neocortex.
    Chervin RD; Pierce PA; Connors BW
    J Neurophysiol; 1988 Nov; 60(5):1695-713. PubMed ID: 3143812
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acute hippocampal slice preparation and hippocampal slice cultures.
    Lein PJ; Barnhart CD; Pessah IN
    Methods Mol Biol; 2011; 758():115-34. PubMed ID: 21815062
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transistor array with an organotypic brain slice: field potential records and synaptic currents.
    Besl B; Fromherz P
    Eur J Neurosci; 2002 Mar; 15(6):999-1005. PubMed ID: 11918660
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interfacing Microfluidics with Microelectrode Arrays for Studying Neuronal Communication and Axonal Signal Propagation.
    Lopes CDF; Mateus JC; Aguiar P
    J Vis Exp; 2018 Dec; (142):. PubMed ID: 30582587
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sustained hyperexcitability elicited by repetitive electric stimulation of organotypic hippocampal explants.
    Fowler J; Bornstein MB; Crain SM
    Brain Res; 1986 Jul; 378(2):398-404. PubMed ID: 3730883
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrophysiological evidence on epileptiform activity enhanced by electrical stimulation of teeth in rats.
    Er K; Yildirim M; Taşdemir T; Akca M; Abidin I
    Neurol Res; 2014 Jul; 36(7):673-8. PubMed ID: 24620974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrical stimulation can inhibit synchronized neuronal activity.
    Durand D
    Brain Res; 1986 Sep; 382(1):139-44. PubMed ID: 3768671
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode arrays.
    Egert U; Schlosshauer B; Fennrich S; Nisch W; Fejtl M; Knott T; Müller T; Hämmerle H
    Brain Res Brain Res Protoc; 1998 Jun; 2(4):229-42. PubMed ID: 9630647
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures.
    Kunkler PE; Kraig RP
    J Neurosci; 1998 May; 18(9):3416-25. PubMed ID: 9547248
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genesis of MEG signals in a mammalian CNS structure.
    Okada YC; Wu J; Kyuhou S
    Electroencephalogr Clin Neurophysiol; 1997 Oct; 103(4):474-85. PubMed ID: 9368492
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Statistical model of the hippocampal CA3 region II. The population framework: model of rhythmic activity in the CA3 slice.
    Barna G; Gróbler T; Erdi P
    Biol Cybern; 1998 Oct; 79(4):309-21. PubMed ID: 9830706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrophysiological analysis of G protein-coupled receptors in mammalian neurons.
    Proctor WR; Dunwiddie TV
    Curr Protoc Pharmacol; 2001 May; Chapter 11():Unit11.2. PubMed ID: 21965065
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Slow periodic activity in the longitudinal hippocampal slice can self-propagate non-synaptically by a mechanism consistent with ephaptic coupling.
    Chiang CC; Shivacharan RS; Wei X; Gonzalez-Reyes LE; Durand DM
    J Physiol; 2019 Jan; 597(1):249-269. PubMed ID: 30295923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multivariate regression methods for estimating velocity of ictal discharges from human microelectrode recordings.
    Liou JY; Smith EH; Bateman LM; McKhann GM; Goodman RR; Greger B; Davis TS; Kellis SS; House PA; Schevon CA
    J Neural Eng; 2017 Aug; 14(4):044001. PubMed ID: 28332484
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-uniform propagation of epileptiform discharge in brain slices of rat neocortex.
    Wadman WJ; Gutnick MJ
    Neuroscience; 1993 Jan; 52(2):255-62. PubMed ID: 8450945
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics.
    Jones IL; Livi P; Lewandowska MK; Fiscella M; Roscic B; Hierlemann A
    Anal Bioanal Chem; 2011 Mar; 399(7):2313-29. PubMed ID: 20676620
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Neural activity propagation in an unfolded hippocampal preparation with a penetrating micro-electrode array.
    Zhang M; Kibler AB; Gonzales-Reyes LE; Durand DM
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25868081
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array.
    Yu Z; Graudejus O; Tsay C; Lacour SP; Wagner S; Morrison B
    J Neurotrauma; 2009 Jul; 26(7):1135-45. PubMed ID: 19594385
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays.
    Ferrea E; Maccione A; Medrihan L; Nieus T; Ghezzi D; Baldelli P; Benfenati F; Berdondini L
    Front Neural Circuits; 2012; 6():80. PubMed ID: 23162432
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.