BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 20713026)

  • 61. Improved in vitro electrophysiology using 3D-structured microelectrode arrays with a micro-mushrooms islets architecture capable of promoting topotaxis.
    Mateus JC; Lopes CDF; Cerquido M; Leitão L; Leitão D; Cardoso S; Ventura J; Aguiar P
    J Neural Eng; 2019 Jun; 16(3):036012. PubMed ID: 30818300
    [No Abstract]   [Full Text] [Related]  

  • 62. A systematic exploration of local network state space in neocortical mouse brain slices.
    Voss LJ
    Brain Res; 2022 Mar; 1779():147784. PubMed ID: 35051403
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Computer analysis of evoked field potentials in hippocampal slice].
    Huang L; Yang S; Luo W
    Hua Xi Yi Ke Da Xue Xue Bao; 1993 Jun; 24(2):171-5. PubMed ID: 8244296
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The use of SU-8 topographically guided microelectrode array in measuring extracellular field potential propagation.
    Law JK; Yeung CK; Li L; Rudd JA; Ingebrandt S; Chan M
    Ann Biomed Eng; 2012 Mar; 40(3):619-27. PubMed ID: 22002836
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Theta waves, neural spikes and seizures can propagate by ephaptic coupling in vivo.
    Subramanian M; Chiang CC; Couturier NH; Durand DM
    Exp Neurol; 2022 Aug; 354():114109. PubMed ID: 35551899
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites.
    Bakkum DJ; Frey U; Radivojevic M; Russell TL; Müller J; Fiscella M; Takahashi H; Hierlemann A
    Nat Commun; 2013; 4():2181. PubMed ID: 23867868
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Propagation of spontaneous synchronized activity in cortical slice cultures recorded by planar electrode arrays.
    Jimbo Y; Robinson HP
    Bioelectrochemistry; 2000 Jun; 51(2):107-15. PubMed ID: 10910158
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spatiotemporal dynamics of the electrical network activity in the root apex.
    Masi E; Ciszak M; Stefano G; Renna L; Azzarello E; Pandolfi C; Mugnai S; Baluska F; Arecchi FT; Mancuso S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):4048-53. PubMed ID: 19234119
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Drug profiling using planar microelectrode arrays.
    Yeung CK; Sommerhage F; Wrobel G; Offenhäusser A; Chan M; Ingebrandt S
    Anal Bioanal Chem; 2007 Apr; 387(8):2673-80. PubMed ID: 17318515
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A nonlinear modeling procedure applied to hippocampal convulsant activity.
    Jennings LW; Doller HJ
    Comput Biomed Res; 1987 Aug; 20(4):396-404. PubMed ID: 3621923
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Diazepam effect during early neonatal development correlates with neuronal Cl(.).
    Glykys J; Staley KJ
    Ann Clin Transl Neurol; 2015 Dec; 2(12):1055-70. PubMed ID: 26734658
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electrophysiological Signature Reveals Laminar Structure of the Porcine Hippocampus.
    Ulyanova AV; Koch PF; Cottone C; Grovola MR; Adam CD; Browne KD; Weber MT; Russo RJ; Gagnon KG; Smith DH; Isaac Chen H; Johnson VE; Kacy Cullen D; Wolf JA
    eNeuro; 2018; 5(5):. PubMed ID: 30229132
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiple Single-Unit Long-Term Tracking on Organotypic Hippocampal Slices Using High-Density Microelectrode Arrays.
    Gong W; Senčar J; Bakkum DJ; Jäckel D; Obien ME; Radivojevic M; Hierlemann AR
    Front Neurosci; 2016; 10():537. PubMed ID: 27920665
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Experimental Investigation on Spontaneously Active Hippocampal Cultures Recorded by Means of High-Density MEAs: Analysis of the Spatial Resolution Effects.
    Maccione A; Gandolfo M; Tedesco M; Nieus T; Imfeld K; Martinoia S; Berdondini L
    Front Neuroeng; 2010; 3():4. PubMed ID: 20485465
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Electrophysiological analysis of the hippocampal-septal projections. I. Response and topographical characteristics.
    DeFrance JF; Kitai ST; Shimono T
    Exp Brain Res; 1973 Jul; 17(5):447-62. PubMed ID: 4741248
    [No Abstract]   [Full Text] [Related]  

  • 76. Long-Term, High-Spatiotemporal Resolution Recording From Cultured Organotypic Slices with High-Density Microelectrode Arrays.
    Gong W; Sencar J; Jäckel D; Müller J; Fiscella M; Radivojevic M; Bakkum D; Hierlemann A
    Int Solid State Sens Actuators Microsyst Conf; 2015 Jun; 18():1037-1040. PubMed ID: 33868793
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Active microelectrode array to record from the mammalian central nervous system in vitro.
    Jobling DT; Smith JG; Wheal HV
    Med Biol Eng Comput; 1981 Sep; 19(5):553-60. PubMed ID: 7334862
    [No Abstract]   [Full Text] [Related]  

  • 78. ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: III. FIRING LEVEL AND TIME CONSTANT.
    Spencer WA; Kandel ER
    J Neurophysiol; 1961 May; 24(3):260-71. PubMed ID: 25286476
    [No Abstract]   [Full Text] [Related]  

  • 79. Stimulus-Evoked Activity Modulation of In Vitro Engineered Cortical and Hippocampal Networks.
    Callegari F; Brofiga M; Poggio F; Massobrio P
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014137
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping.
    Lee W; Kobayashi S; Nagase M; Jimbo Y; Saito I; Inoue Y; Yambe T; Sekino M; Malliaras GG; Yokota T; Tanaka M; Someya T
    Sci Adv; 2018 Oct; 4(10):eaau2426. PubMed ID: 30345362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.