BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

905 related articles for article (PubMed ID: 20713313)

  • 1. Task-based performance analysis of FBP, SART and ML for digital breast tomosynthesis using signal CNR and Channelised Hotelling Observers.
    Van de Sompel D; Brady SM; Boone J
    Med Image Anal; 2011 Feb; 15(1):53-70. PubMed ID: 20713313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms.
    Zeng R; Badano A; Myers KJ
    Phys Med Biol; 2017 Apr; 62(7):2598-2611. PubMed ID: 28151728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An iterative reconstruction algorithm for digital breast tomosynthesis imaging using real data at three radiation doses.
    Polat A; Yildirim I
    J Xray Sci Technol; 2018; 26(3):347-360. PubMed ID: 29504549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions.
    Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE
    Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction.
    Eck BL; Fahmi R; Brown KM; Zabic S; Raihani N; Miao J; Wilson DL
    Med Phys; 2015 Oct; 42(10):6098-111. PubMed ID: 26429285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective-diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis reconstruction.
    Lu Y; Chan HP; Wei J; Hadjiiski LM
    Med Phys; 2010 Nov; 37(11):6003-14. PubMed ID: 21158312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study based on image quality and clinical task performance for CT reconstruction algorithms in radiotherapy.
    Li H; Dolly S; Chen HC; Anastasio MA; Low DA; Li HH; Michalski JM; Thorstad WL; Gay H; Mutic S
    J Appl Clin Med Phys; 2016 Jul; 17(4):377-390. PubMed ID: 27455472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis.
    Zhang Y; Chan HP; Sahiner B; Wei J; Goodsitt MM; Hadjiiski LM; Ge J; Zhou C
    Med Phys; 2006 Oct; 33(10):3781-95. PubMed ID: 17089843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the sensitivity of the optimization of acquisition geometry to the choice of reconstruction algorithm in digital breast tomosynthesis through a simulation study.
    Zeng R; Park S; Bakic P; Myers KJ
    Phys Med Biol; 2015 Feb; 60(3):1259-88. PubMed ID: 25591807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.
    Kim YS; Park HS; Lee HH; Choi YW; Choi JG; Kim HH; Kim HJ
    Radiol Med; 2016 Feb; 121(2):81-92. PubMed ID: 26383027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the acquisition geometry in digital tomosynthesis of the breast.
    Sechopoulos I; Ghetti C
    Med Phys; 2009 Apr; 36(4):1199-207. PubMed ID: 19472626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space.
    Chawla AS; Lo JY; Baker JA; Samei E
    Med Phys; 2009 Nov; 36(11):4859-69. PubMed ID: 19994493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of statistical iterative reconstruction for dedicated breast CT.
    Makeev A; Glick SJ
    Med Phys; 2013 Aug; 40(8):081904. PubMed ID: 23927318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of reconstruction algorithms for breast tomosynthesis.
    Wu T; Moore RH; Rafferty EA; Kopans DB
    Med Phys; 2004 Sep; 31(9):2636-47. PubMed ID: 15487747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing image quality and dose reduction of a new x-ray computed tomography iterative reconstruction algorithm using model observers.
    Tseng HW; Fan J; Kupinski MA; Sainath P; Hsieh J
    Med Phys; 2014 Jul; 41(7):071910. PubMed ID: 24989388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ray profile modeling on resolution recovery in clinical CT.
    Hofmann C; Knaup M; Kachelrieß M
    Med Phys; 2014 Feb; 41(2):021907. PubMed ID: 24506628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.
    Hu YH; Zhao W
    Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.
    Kim H; Lee T; Hong J; Sabir S; Lee JR; Choi YW; Kim HH; Chae EY; Cho S
    Med Phys; 2017 Feb; 44(2):417-425. PubMed ID: 28032909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.