These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Efficient one-pot enzymatic synthesis of alpha-(1-->4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase. Nakai H; Dilokpimol A; Abou Hachem M; Svensson B Carbohydr Res; 2010 May; 345(8):1061-4. PubMed ID: 20392438 [TBL] [Abstract][Full Text] [Related]
4. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539 [TBL] [Abstract][Full Text] [Related]
5. Hyper expression of kojibiose phosphorylase gene and trehalose phosphorylase gene from Thermoanaerobacter brockii ATCC35047 in Bacillus subtilis and selaginose synthesis utilizing two phosphorylases. Yamamoto T; Mukai K; Maruta K; Watanabe H; Yamashita H; Nishimoto T; Kubota M; Chaen H; Fukuda S J Biosci Bioeng; 2005 Sep; 100(3):343-6. PubMed ID: 16243288 [TBL] [Abstract][Full Text] [Related]
6. Construction and characterization of chimeric enzymes of kojibiose phosphorylase and trehalose phosphorylase from Thermoanaerobacter brockii. Yamamoto T; Yamashita H; Mukai K; Watanabe H; Kubota M; Chaen H; Fukuda S Carbohydr Res; 2006 Oct; 341(14):2350-9. PubMed ID: 16872587 [TBL] [Abstract][Full Text] [Related]
7. Structural and mutational analysis of substrate recognition in kojibiose phosphorylase. Okada S; Yamamoto T; Watanabe H; Nishimoto T; Chaen H; Fukuda S; Wakagi T; Fushinobu S FEBS J; 2014 Feb; 281(3):778-86. PubMed ID: 24255995 [TBL] [Abstract][Full Text] [Related]
8. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel alpha-glucosides through reverse phosphorolysis by maltose phosphorylase. Nakai H; Baumann MJ; Petersen BO; Westphal Y; Schols H; Dilokpimol A; Hachem MA; Lahtinen SJ; Duus JØ; Svensson B FEBS J; 2009 Dec; 276(24):7353-65. PubMed ID: 19919544 [TBL] [Abstract][Full Text] [Related]
9. Discovery of nigerose phosphorylase from Clostridium phytofermentans. Nihira T; Nakai H; Chiku K; Kitaoka M Appl Microbiol Biotechnol; 2012 Feb; 93(4):1513-22. PubMed ID: 21808968 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for reversible phosphorolysis and hydrolysis reactions of 2-O-α-glucosylglycerol phosphorylase. Touhara KK; Nihira T; Kitaoka M; Nakai H; Fushinobu S J Biol Chem; 2014 Jun; 289(26):18067-75. PubMed ID: 24828502 [TBL] [Abstract][Full Text] [Related]
11. Cloning and sequencing of kojibiose phosphorylase gene from Thermoanaerobacter brockii ATCC35047. Yamamoto T; Maruta K; Mukai K; Yamashita H; Nishimoto T; Kubota M; Fukuda S; Kurimoto M; Tsujisaka Y J Biosci Bioeng; 2004; 98(2):99-106. PubMed ID: 16233673 [TBL] [Abstract][Full Text] [Related]
12. Identification of Bacillus selenitireducens MLS10 maltose phosphorylase possessing synthetic ability for branched α-D-glucosyl trisaccharides. Nihira T; Saito Y; Kitaoka M; Otsubo K; Nakai H Carbohydr Res; 2012 Oct; 360():25-30. PubMed ID: 22940176 [TBL] [Abstract][Full Text] [Related]
13. Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Pan YT; Koroth Edavana V; Jourdian WJ; Edmondson R; Carroll JD; Pastuszak I; Elbein AD Eur J Biochem; 2004 Nov; 271(21):4259-69. PubMed ID: 15511231 [TBL] [Abstract][Full Text] [Related]
14. Acceptor specificity of trehalose phosphorylase from Thermoanaerobacter brockii: production of novel nonreducing trisaccharide, 6-O-alpha-D-galactopyranosyl trehalose. Maruta K; Watanabe H; Nishimoto T; Kubota M; Chaen H; Fukuda S; Kurimoto M; Tsujisaka Y J Biosci Bioeng; 2006 May; 101(5):385-90. PubMed ID: 16781466 [TBL] [Abstract][Full Text] [Related]
15. Engineering the acceptor specificity of trehalose phosphorylase for the production of trehalose analogs. Van der Borght J; Soetaert W; Desmet T Biotechnol Prog; 2012; 28(5):1257-62. PubMed ID: 22848048 [TBL] [Abstract][Full Text] [Related]
16. Enzymatic properties of recombinant kojibiose phosphorylase from Caldicellulosiruptor saccharolyticus ATCC43494. Yamamoto T; Nishio-Kosaka M; Izawa S; Aga H; Nishimoto T; Chaen H; Fukuda S Biosci Biotechnol Biochem; 2011; 75(6):1208-10. PubMed ID: 21670511 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate. Taguchi Y; Saburi W; Imai R; Mori H Biosci Biotechnol Biochem; 2017 Aug; 81(8):1512-1519. PubMed ID: 28537141 [TBL] [Abstract][Full Text] [Related]
18. Reaction mechanism of chitobiose phosphorylase from Vibrio proteolyticus: identification of family 36 glycosyltransferase in Vibrio. Honda Y; Kitaoka M; Hayashi K Biochem J; 2004 Jan; 377(Pt 1):225-32. PubMed ID: 13678418 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a laminaribiose phosphorylase from Acholeplasma laidlawii PG-8A and production of 1,3-β-D-glucosyl disaccharides. Nihira T; Saito Y; Kitaoka M; Nishimoto M; Otsubo K; Nakai H Carbohydr Res; 2012 Nov; 361():49-54. PubMed ID: 22982171 [TBL] [Abstract][Full Text] [Related]