BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20713464)

  • 1. Genetic mapping of natural variation in a shade avoidance response: ELF3 is the candidate gene for a QTL in hypocotyl growth regulation.
    Coluccio MP; Sanchez SE; Kasulin L; Yanovsky MJ; Botto JF
    J Exp Bot; 2011 Jan; 62(1):167-76. PubMed ID: 20713464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The receptor-like kinase ERECTA contributes to the shade-avoidance syndrome in a background-dependent manner.
    Kasulin L; Agrofoglio Y; Botto JF
    Ann Bot; 2013 May; 111(5):811-9. PubMed ID: 23444123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network analysis identifies ELF3 as a QTL for the shade avoidance response in Arabidopsis.
    Jiménez-Gómez JM; Wallace AD; Maloof JN
    PLoS Genet; 2010 Sep; 6(9):e1001100. PubMed ID: 20838594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arabidopsis COP1 and SPA genes are essential for plant elongation but not for acceleration of flowering time in response to a low red light to far-red light ratio.
    Rolauffs S; Fackendahl P; Sahm J; Fiene G; Hoecker U
    Plant Physiol; 2012 Dec; 160(4):2015-27. PubMed ID: 23093358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating of the rapid shade-avoidance response by the circadian clock in plants.
    Salter MG; Franklin KA; Whitelam GC
    Nature; 2003 Dec; 426(6967):680-3. PubMed ID: 14668869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TCP Transcription Factors Regulate Shade Avoidance via Directly Mediating the Expression of Both
    Zhou Y; Zhang D; An J; Yin H; Fang S; Chu J; Zhao Y; Li J
    Plant Physiol; 2018 Feb; 176(2):1850-1861. PubMed ID: 29254986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes.
    Raschke A; Ibañez C; Ullrich KK; Anwer MU; Becker S; Glöckner A; Trenner J; Denk K; Saal B; Sun X; Ni M; Davis SJ; Delker C; Quint M
    BMC Plant Biol; 2015 Aug; 15():197. PubMed ID: 26269119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diurnal dependence of growth responses to shade in Arabidopsis: role of hormone, clock, and light signaling.
    Sellaro R; Pacín M; Casal JJ
    Mol Plant; 2012 May; 5(3):619-28. PubMed ID: 22311777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the mechanism of end-of-day far-red light (EODFR)-induced shade avoidance responses in Arabidopsis thaliana.
    Mizuno T; Oka H; Yoshimura F; Ishida K; Yamashino T
    Biosci Biotechnol Biochem; 2015; 79(12):1987-94. PubMed ID: 26193333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis.
    Wang H; Zhang Z; Li H; Zhao X; Liu X; Ortiz M; Lin C; Liu B
    J Exp Bot; 2013 Feb; 64(4):1017-24. PubMed ID: 23314820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana.
    Loudet O; Michael TP; Burger BT; Le Metté C; Mockler TC; Weigel D; Chory J
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):17193-8. PubMed ID: 18971337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. B-Box transcription factor BBX28 requires CONSTITUTIVE PHOTOMORPHOGENESIS1 to induce shade-avoidance response in Arabidopsis thaliana.
    Saura-Sánchez M; Gomez-Ocampo G; Pereyra ME; Barraza CE; Rossi AH; Córdoba JP; Botto JF
    Plant Physiol; 2024 Jun; 195(3):2443-2455. PubMed ID: 38620015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytochrome-interacting factor 4 (PIF4) inhibits expression of SHORT HYPOCOTYL 2 (SHY2) to promote hypocotyl growth during shade avoidance in Arabidopsis.
    Li T; Li B; Wang L; Xie Z; Wang X; Zou L; Zhang D; Lin H
    Biochem Biophys Res Commun; 2021 Jan; 534():857-863. PubMed ID: 33153717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of the shade-avoidance response in Arabidopsis.
    Ciolfi A; Sessa G; Sassi M; Possenti M; Salvucci S; Carabelli M; Morelli G; Ruberti I
    Plant Physiol; 2013 Sep; 163(1):331-53. PubMed ID: 23893169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COP1 re-accumulates in the nucleus under shade.
    Pacín M; Legris M; Casal JJ
    Plant J; 2013 Aug; 75(4):631-41. PubMed ID: 23647163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days: an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light.
    Nefissi R; Natsui Y; Miyata K; Oda A; Hase Y; Nakagawa M; Ghorbel A; Mizoguchi T
    J Exp Bot; 2011 May; 62(8):2731-44. PubMed ID: 21296763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time.
    Kim WY; Hicks KA; Somers DE
    Plant Physiol; 2005 Nov; 139(3):1557-69. PubMed ID: 16258016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in
    Huang X; Zhang Q; Jiang Y; Yang C; Wang Q; Li L
    Elife; 2018 Jun; 7():. PubMed ID: 29926790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome A elevates plant circadian-clock components to suppress shade avoidance in deep-canopy shade.
    Fraser DP; Panter PE; Sharma A; Sharma B; Dodd AN; Franklin KA
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34187900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Shade-Induced Hypocotyl Elongation in Arabidopsis.
    Ince YÇ; Galvão VC
    Methods Mol Biol; 2021; 2297():21-31. PubMed ID: 33656666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.