These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Sucrose nonfermenting AMPK-related kinase (SNARK) regulates exercise-stimulated and ischemia-stimulated glucose transport in the heart. Sun XL; Lessard SJ; An D; Koh HJ; Esumi H; Hirshman MF; Goodyear LJ J Cell Biochem; 2019 Jan; 120(1):685-696. PubMed ID: 30256437 [TBL] [Abstract][Full Text] [Related]
3. Dissociation of AMP-activated protein kinase and p38 mitogen-activated protein kinase signaling in skeletal muscle. Ho RC; Fujii N; Witters LA; Hirshman MF; Goodyear LJ Biochem Biophys Res Commun; 2007 Oct; 362(2):354-9. PubMed ID: 17709097 [TBL] [Abstract][Full Text] [Related]
4. AMP-activated protein kinase alpha2 activity is not essential for contraction- and hyperosmolarity-induced glucose transport in skeletal muscle. Fujii N; Hirshman MF; Kane EM; Ho RC; Peter LE; Seifert MM; Goodyear LJ J Biol Chem; 2005 Nov; 280(47):39033-41. PubMed ID: 16186119 [TBL] [Abstract][Full Text] [Related]
5. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Sakamoto K; Göransson O; Hardie DG; Alessi DR Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E310-7. PubMed ID: 15068958 [TBL] [Abstract][Full Text] [Related]
6. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473 [TBL] [Abstract][Full Text] [Related]
7. CaMKK2 is not involved in contraction-stimulated AMPK activation and glucose uptake in skeletal muscle. Negoita F; Addinsall AB; Hellberg K; Bringas CF; Hafen PS; Sermersheim TJ; Agerholm M; Lewis CTA; Ahwazi D; Ling NXY; Larsen JK; Deshmukh AS; Hossain MA; Oakhill JS; Ochala J; Brault JJ; Sankar U; Drewry DH; Scott JW; Witczak CA; Sakamoto K Mol Metab; 2023 Sep; 75():101761. PubMed ID: 37380024 [TBL] [Abstract][Full Text] [Related]
8. LKB1 and AMPK and the regulation of skeletal muscle metabolism. Koh HJ; Brandauer J; Goodyear LJ Curr Opin Clin Nutr Metab Care; 2008 May; 11(3):227-32. PubMed ID: 18403917 [TBL] [Abstract][Full Text] [Related]
9. Evidence for 5' AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Hayashi T; Hirshman MF; Kurth EJ; Winder WW; Goodyear LJ Diabetes; 1998 Aug; 47(8):1369-73. PubMed ID: 9703344 [TBL] [Abstract][Full Text] [Related]
10. Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise. Sylow L; Møller LLV; Kleinert M; D'Hulst G; De Groote E; Schjerling P; Steinberg GR; Jensen TE; Richter EA Diabetes; 2017 Jun; 66(6):1548-1559. PubMed ID: 28389470 [TBL] [Abstract][Full Text] [Related]
11. AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle. Jensen TE; Schjerling P; Viollet B; Wojtaszewski JF; Richter EA PLoS One; 2008 May; 3(5):e2102. PubMed ID: 18461163 [TBL] [Abstract][Full Text] [Related]
12. AMPK and TBC1D1 Regulate Muscle Glucose Uptake After, but Not During, Exercise and Contraction. Kjøbsted R; Roll JLW; Jørgensen NO; Birk JB; Foretz M; Viollet B; Chadt A; Al-Hasani H; Wojtaszewski JFP Diabetes; 2019 Jul; 68(7):1427-1440. PubMed ID: 31010958 [TBL] [Abstract][Full Text] [Related]
13. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. Sakamoto K; McCarthy A; Smith D; Green KA; Grahame Hardie D; Ashworth A; Alessi DR EMBO J; 2005 May; 24(10):1810-20. PubMed ID: 15889149 [TBL] [Abstract][Full Text] [Related]
15. Contraction-Mediated Glucose Transport in Skeletal Muscle Is Regulated by a Framework of AMPK, TBC1D1/4, and Rac1. de Wendt C; Espelage L; Eickelschulte S; Springer C; Toska L; Scheel A; Bedou AD; Benninghoff T; Cames S; Stermann T; Chadt A; Al-Hasani H Diabetes; 2021 Dec; 70(12):2796-2809. PubMed ID: 34561225 [TBL] [Abstract][Full Text] [Related]
16. Leucine modulates contraction- and insulin-stimulated glucose transport and upstream signaling events in rat skeletal muscle. Iwanaka N; Egawa T; Satoubu N; Karaike K; Ma X; Masuda S; Hayashi T J Appl Physiol (1985); 2010 Feb; 108(2):274-82. PubMed ID: 19940100 [TBL] [Abstract][Full Text] [Related]
17. Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle. Toyoda T; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Sato K; Fushiki T; Nakao K; Hayashi T Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E583-90. PubMed ID: 16249251 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of contraction-stimulated AMP-activated protein kinase inhibits contraction-stimulated increases in PAS-TBC1D1 and glucose transport without altering PAS-AS160 in rat skeletal muscle. Funai K; Cartee GD Diabetes; 2009 May; 58(5):1096-104. PubMed ID: 19208911 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells. Fryer LG; Foufelle F; Barnes K; Baldwin SA; Woods A; Carling D Biochem J; 2002 Apr; 363(Pt 1):167-74. PubMed ID: 11903059 [TBL] [Abstract][Full Text] [Related]
20. Enhanced Muscle Insulin Sensitivity After Contraction/Exercise Is Mediated by AMPK. Kjøbsted R; Munk-Hansen N; Birk JB; Foretz M; Viollet B; Björnholm M; Zierath JR; Treebak JT; Wojtaszewski JF Diabetes; 2017 Mar; 66(3):598-612. PubMed ID: 27797909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]