These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 20713726)
1. Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification. Caballero R; Dolz-Gaitón P; Gómez R; Amorós I; Barana A; González de la Fuente M; Osuna L; Duarte J; López-Izquierdo A; Moraleda I; Gálvez E; Sánchez-Chapula JA; Tamargo J; Delpón E Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15631-6. PubMed ID: 20713726 [TBL] [Abstract][Full Text] [Related]
2. Structural basis of drugs that increase cardiac inward rectifier Kir2.1 currents. Gómez R; Caballero R; Barana A; Amorós I; De Palm SH; Matamoros M; Núñez M; Pérez-Hernández M; Iriepa I; Tamargo J; Delpón E Cardiovasc Res; 2014 Nov; 104(2):337-46. PubMed ID: 25205296 [TBL] [Abstract][Full Text] [Related]
3. Two Kir2.1 channel populations with different sensitivities to Mg(2+) and polyamine block: a model for the cardiac strong inward rectifier K(+) channel. Yan DH; Ishihara K J Physiol; 2005 Mar; 563(Pt 3):725-44. PubMed ID: 15618275 [TBL] [Abstract][Full Text] [Related]
4. Different intracellular polyamine concentrations underlie the difference in the inward rectifier K(+) currents in atria and ventricles of the guinea-pig heart. Yan DH; Nishimura K; Yoshida K; Nakahira K; Ehara T; Igarashi K; Ishihara K J Physiol; 2005 Mar; 563(Pt 3):713-24. PubMed ID: 15668212 [TBL] [Abstract][Full Text] [Related]
5. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059 [TBL] [Abstract][Full Text] [Related]
6. A difference in inward rectification and polyamine block and permeation between the Kir2.1 and Kir3.1/Kir3.4 K+ channels. Makary SM; Claydon TW; Enkvetchakul D; Nichols CG; Boyett MR J Physiol; 2005 Nov; 568(Pt 3):749-66. PubMed ID: 16109731 [TBL] [Abstract][Full Text] [Related]
7. Differential polyamine sensitivity in inwardly rectifying Kir2 potassium channels. Panama BK; Lopatin AN J Physiol; 2006 Mar; 571(Pt 2):287-302. PubMed ID: 16373386 [TBL] [Abstract][Full Text] [Related]
9. Unique Kir2.x properties determine regional and species differences in the cardiac inward rectifier K+ current. Dhamoon AS; Pandit SV; Sarmast F; Parisian KR; Guha P; Li Y; Bagwe S; Taffet SM; Anumonwo JM Circ Res; 2004 May; 94(10):1332-9. PubMed ID: 15087421 [TBL] [Abstract][Full Text] [Related]
10. Ser165 in the second transmembrane region of the Kir2.1 channel determines its susceptibility to blockade by intracellular Mg2+. Fujiwara Y; Kubo Y J Gen Physiol; 2002 Nov; 120(5):677-93. PubMed ID: 12407079 [TBL] [Abstract][Full Text] [Related]
11. Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions. Ponce-Balbuena D; López-Izquierdo A; Ferrer T; Rodríguez-Menchaca AA; Aréchiga-Figueroa IA; Sánchez-Chapula JA J Pharmacol Exp Ther; 2009 Nov; 331(2):563-73. PubMed ID: 19654266 [TBL] [Abstract][Full Text] [Related]
12. Functional roles of charged amino acid residues on the wall of the cytoplasmic pore of Kir2.1. Fujiwara Y; Kubo Y J Gen Physiol; 2006 Apr; 127(4):401-19. PubMed ID: 16533896 [TBL] [Abstract][Full Text] [Related]
13. Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel. Xie LH; John SA; Ribalet B; Weiss JN J Physiol; 2004 Nov; 561(Pt 1):159-68. PubMed ID: 15459242 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of rectification in inward-rectifier K+ channels. Guo D; Ramu Y; Klem AM; Lu Z J Gen Physiol; 2003 Apr; 121(4):261-75. PubMed ID: 12642596 [TBL] [Abstract][Full Text] [Related]
15. A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents. Hattori T; Makiyama T; Akao M; Ehara E; Ohno S; Iguchi M; Nishio Y; Sasaki K; Itoh H; Yokode M; Kita T; Horie M; Kimura T Cardiovasc Res; 2012 Mar; 93(4):666-73. PubMed ID: 22155372 [TBL] [Abstract][Full Text] [Related]
17. Novel insights into the structural basis of pH-sensitivity in inward rectifier K+ channels Kir2.3. Ureche ON; Baltaev R; Ureche L; Strutz-Seebohm N; Lang F; Seebohm G Cell Physiol Biochem; 2008; 21(5-6):347-56. PubMed ID: 18453743 [TBL] [Abstract][Full Text] [Related]
18. Inward rectifier potassium current (I K1) and Kir2 composition of the zebrafish (Danio rerio) heart. Hassinen M; Haverinen J; Hardy ME; Shiels HA; Vornanen M Pflugers Arch; 2015 Dec; 467(12):2437-46. PubMed ID: 25991088 [TBL] [Abstract][Full Text] [Related]
19. Contribution of cytosolic cysteine residues to the gating properties of the Kir2.1 inward rectifier. Garneau L; Klein H; Parent L; Sauvé R Biophys J; 2003 Jun; 84(6):3717-29. PubMed ID: 12770878 [TBL] [Abstract][Full Text] [Related]
20. Insights in KIR2.1 channel structure and function by an evolutionary approach; cloning and functional characterization of the first reptilian inward rectifier channel KIR2.1, derived from the California kingsnake (Lampropeltis getula californiae). Houtman MJ; Korte SM; Ji Y; Kok B; Vos MA; Stary-Weinzinger A; van der Heyden MA Biochem Biophys Res Commun; 2014 Oct; 452(4):992-7. PubMed ID: 25223803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]