BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 20713732)

  • 1. A family of diiron monooxygenases catalyzing amino acid beta-hydroxylation in antibiotic biosynthesis.
    Makris TM; Chakrabarti M; Münck E; Lipscomb JD
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15391-6. PubMed ID: 20713732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diiron monooxygenases in natural product biosynthesis.
    Komor AJ; Jasniewski AJ; Que L; Lipscomb JD
    Nat Prod Rep; 2018 Jul; 35(7):646-659. PubMed ID: 29552683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Carboxylate Shift Regulates Dioxygen Activation by the Diiron Nonheme β-Hydroxylase CmlA upon Binding of a Substrate-Loaded Nonribosomal Peptide Synthetase.
    Jasniewski AJ; Knoot CJ; Lipscomb JD; Que L
    Biochemistry; 2016 Oct; 55(41):5818-5831. PubMed ID: 27668828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a dinuclear iron cluster-containing β-hydroxylase active in antibiotic biosynthesis.
    Makris TM; Knoot CJ; Wilmot CM; Lipscomb JD
    Biochemistry; 2013 Sep; 52(38):6662-71. PubMed ID: 23980641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Diiron Monooxygenase CmlA from Chloramphenicol Biosynthesis Allows Reconstitution of β-Hydroxylation during Glycopeptide Antibiotic Biosynthesis.
    Kaniusaite M; Goode RJA; Schittenhelm RB; Makris TM; Cryle MJ
    ACS Chem Biol; 2019 Dec; 14(12):2932-2941. PubMed ID: 31774267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins.
    Fox BG; Shanklin J; Ai J; Loehr TM; Sanders-Loehr J
    Biochemistry; 1994 Nov; 33(43):12776-86. PubMed ID: 7947683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Isotopes and Isotope Effects for Investigations of Diiron Oxygenase Mechanisms.
    Banerjee R; Komor AJ; Lipscomb JD
    Methods Enzymol; 2017; 596():239-290. PubMed ID: 28911774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active-site structure of a β-hydroxylase in antibiotic biosynthesis.
    Vu VV; Makris TM; Lipscomb JD; Que L
    J Am Chem Soc; 2011 May; 133(18):6938-41. PubMed ID: 21506543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthetic Studies of Telomycin Reveal New Lipopeptides with Enhanced Activity.
    Fu C; Keller L; Bauer A; Brönstrup M; Froidbise A; Hammann P; Herrmann J; Mondesert G; Kurz M; Schiell M; Schummer D; Toti L; Wink J; Müller R
    J Am Chem Soc; 2015 Jun; 137(24):7692-705. PubMed ID: 26043159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An unusual peroxo intermediate of the arylamine oxygenase of the chloramphenicol biosynthetic pathway.
    Makris TM; Vu VV; Meier KK; Komor AJ; Rivard BS; Münck E; Que L; Lipscomb JD
    J Am Chem Soc; 2015 Feb; 137(4):1608-17. PubMed ID: 25564306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state kinetics and spectroscopic characterization of enzyme-tRNA interactions for the non-heme diiron tRNA-monooxygenase, MiaE.
    Subedi BP; Corder AL; Zhang S; Foss FW; Pierce BS
    Biochemistry; 2015 Jan; 54(2):363-76. PubMed ID: 25453905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CanE, an Iron/2-Oxoglutarate-Dependent Lasso Peptide Hydroxylase from
    Zhang C; Seyedsayamdost MR
    ACS Chem Biol; 2020 Apr; 15(4):890-894. PubMed ID: 32191027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates.
    Komor AJ; Rivard BS; Fan R; Guo Y; Que L; Lipscomb JD
    Biochemistry; 2017 Sep; 56(37):4940-4950. PubMed ID: 28823151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical, Mössbauer, and EPR studies of the diiron cluster of phenol hydroxylase from Pseudomonas sp. strain CF 600.
    Cadieux E; Vrajmasu V; Achim C; Powlowski J; Münck E
    Biochemistry; 2002 Aug; 41(34):10680-91. PubMed ID: 12186554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. tRNA-modifying MiaE protein from Salmonella typhimurium is a nonheme diiron monooxygenase.
    Mathevon C; Pierrel F; Oddou JL; Garcia-Serres R; Blondin G; Latour JM; Ménage S; Gambarelli S; Fontecave M; Atta M
    Proc Natl Acad Sci U S A; 2007 Aug; 104(33):13295-300. PubMed ID: 17679698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hijacking a hydroxyethyl unit from a central metabolic ketose into a nonribosomal peptide assembly line.
    Peng C; Pu JY; Song LQ; Jian XH; Tang MC; Tang GL
    Proc Natl Acad Sci U S A; 2012 May; 109(22):8540-5. PubMed ID: 22586110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitution of a Single Amino Acid Reverses the Regiospecificity of the Baeyer-Villiger Monooxygenase PntE in the Biosynthesis of the Antibiotic Pentalenolactone.
    Chen K; Wu S; Zhu L; Zhang C; Xiang W; Deng Z; Ikeda H; Cane DE; Zhu D
    Biochemistry; 2016 Dec; 55(48):6696-6704. PubMed ID: 27933799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli.
    Price JC; Barr EW; Tirupati B; Bollinger JM; Krebs C
    Biochemistry; 2003 Jun; 42(24):7497-508. PubMed ID: 12809506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic analysis of siderophore β-hydroxylases reveals divergent stereocontrol and expands the condensation domain family.
    Reitz ZL; Hardy CD; Suk J; Bouvet J; Butler A
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19805-19814. PubMed ID: 31527229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster.
    Yuan WM; Gentil GD; Budde AD; Leong SA
    J Bacteriol; 2001 Jul; 183(13):4040-51. PubMed ID: 11395469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.