These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 20714053)

  • 1. Comment on 'Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities'.
    Zhang K; Choi BI; Choi HJ; Jhon MS
    Nanotechnology; 2010 Sep; 21(37):378001. PubMed ID: 20714053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of uniform core-shell structural calcium and titanium precipitation particles and enhanced electrorheological activities.
    Cheng Y; Liu X; Guo J; Liu F; Li Z; Xu G; Cui P
    Nanotechnology; 2009 Feb; 20(5):055604. PubMed ID: 19417351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of high dielectric constant core on the activity of core-shell structure electrorheological fluid.
    Wu J; Xu G; Cheng Y; Liu F; Guo J; Cui P
    J Colloid Interface Sci; 2012 Jul; 378(1):36-43. PubMed ID: 22579514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comment on "Preparation and electrorheological property of rare earth modified amorphous Ba(x)Sr(1-x)TiO3 gel electrorheological fluid".
    Choi HJ; Lee IS; Sung JH; Park BJ; Jhon MS
    J Colloid Interface Sci; 2006 Mar; 295(1):291-3. PubMed ID: 16165145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saturated orientational polarization of polar molecules in giant electrorheological fluids.
    Tan P; Tian WJ; Wu XF; Huang JY; Zhou LW; Huang JP
    J Phys Chem B; 2009 Jul; 113(27):9092-7. PubMed ID: 19530664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The giant electrorheological effect in suspensions of nanoparticles.
    Wen W; Huang X; Yang S; Lu K; Sheng P
    Nat Mater; 2003 Nov; 2(11):727-30. PubMed ID: 14528296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology.
    Liu YD; Fang FF; Choi HJ
    Langmuir; 2010 Aug; 26(15):12849-54. PubMed ID: 20593791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core/shell nanocomposite based on the local polarization and its electrorheological behavior.
    Wang B; Zhao X
    Langmuir; 2005 Jul; 21(14):6553-9. PubMed ID: 15982066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized yield stress equation for electrorheological fluids.
    Zhang K; Liu YD; Jhon MS; Choi HJ
    J Colloid Interface Sci; 2013 Nov; 409():259-63. PubMed ID: 23993784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comment on "Universal yield stress equation for transient response of zeolite based electrorheological fluid".
    Park BJ; Choi HJ
    J Colloid Interface Sci; 2010 May; 345(2):554-5. PubMed ID: 20227711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Electrorheological Properties of Elastomers Containing TiO₂/Urea Core-Shell Particles.
    Niu C; Dong X; Qi M
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24855-63. PubMed ID: 26492099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Interfacial Polarization-Induced Electrorheological Effect.
    Hao T
    J Colloid Interface Sci; 1998 Oct; 206(1):240-246. PubMed ID: 9761649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-static electrorheological properties of hematite/silicone oil suspensions under DC electric fields.
    Espin MJ; Delgado AV; Płocharski J
    Langmuir; 2005 May; 21(11):4896-903. PubMed ID: 15896029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions.
    Tilki T; Yavuz M; Karabacak C; Cabuk M; Ulutürk M
    Carbohydr Res; 2010 Mar; 345(5):672-9. PubMed ID: 20116050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-shell structured monodisperse poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) coated polystyrene microspheres and their electrorheological response.
    Liu YD; Kim JE; Choi HJ
    Macromol Rapid Commun; 2011 Jun; 32(12):881-6. PubMed ID: 21542046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of potato starch and its electrorheological suspension.
    Sung JH; Park DP; Park BJ; Choi HJ; Jhon MS
    Biomacromolecules; 2005; 6(4):2182-8. PubMed ID: 16004461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of giant electrorheological fluids.
    Seo YP; Seo Y
    J Colloid Interface Sci; 2013 Jul; 402():90-3. PubMed ID: 23643183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient response of an electrorheological fluid under square-wave electric field excitation.
    Tian Y; Li C; Zhang M; Meng Y; Wen S
    J Colloid Interface Sci; 2005 Aug; 288(1):290-7. PubMed ID: 15927589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.