These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 20714541)

  • 41. Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering.
    Liao S; Murugan R; Chan CK; Ramakrishna S
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):252-60. PubMed ID: 19627790
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of porous calcite using chopped nylon fiber and its evaluation using rats.
    Ishikawa K; Tram NX; Tsuru K; Toita R
    J Mater Sci Mater Med; 2015 Feb; 26(2):94. PubMed ID: 25649514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions.
    Wakae H; Takeuchi A; Udoh K; Matsuya S; Munar ML; LeGeros RZ; Nakasima A; Ishikawa K
    J Biomed Mater Res A; 2008 Dec; 87(4):957-63. PubMed ID: 18257056
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication and characterization of novel hybrid organic/inorganic microparticles to apply in bone regeneration.
    Jayasuriya AC; Bhat A
    J Biomed Mater Res A; 2010 Jun; 93(4):1280-8. PubMed ID: 19827109
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hollow carbonated hydroxyapatite microspheres with mesoporous structure: hydrothermal fabrication and drug delivery property.
    Guo YJ; Wang YY; Chen T; Wei YT; Chu LF; Guo YP
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3166-72. PubMed ID: 23706197
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Exploring cellular adhesion and differentiation in a micro-/nano-hybrid polymer scaffold.
    Cheng K; Kisaalita WS
    Biotechnol Prog; 2010; 26(3):838-46. PubMed ID: 20196160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles.
    Wutticharoenmongkol P; Sanchavanakit N; Pavasant P; Supaphol P
    Macromol Biosci; 2006 Jan; 6(1):70-7. PubMed ID: 16374772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integrating novel technologies to fabricate smart scaffolds.
    Moroni L; de Wijn JR; van Blitterswijk CA
    J Biomater Sci Polym Ed; 2008; 19(5):543-72. PubMed ID: 18419938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetic mesoporous carbonated hydroxyapatite microspheres with hierarchical nanostructure for drug delivery systems.
    Guo YP; Guo LH; Yao YB; Ning CQ; Guo YJ
    Chem Commun (Camb); 2011 Nov; 47(44):12215-7. PubMed ID: 21998826
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone.
    Garreta E; Gasset D; Semino C; BorrĂ³s S
    Biomol Eng; 2007 Feb; 24(1):75-80. PubMed ID: 16846750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds.
    Tan L; Gong M; Zheng F; Zhang B; Yang K
    Biomed Mater; 2009 Feb; 4(1):015016. PubMed ID: 19141874
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair.
    Cui Y; Liu Y; Cui Y; Jing X; Zhang P; Chen X
    Acta Biomater; 2009 Sep; 5(7):2680-92. PubMed ID: 19376759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of solid and hollow carbonate apatite microspheres as bone substitutes using calcite microspheres as a precursor.
    Sunouchi K; Tsuru K; Maruta M; Kawachi G; Matsuya S; Terada Y; Ishikawa K
    Dent Mater J; 2012; 31(4):549-57. PubMed ID: 22864207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of porosity-controlled calcium carbonate by thermal decomposition of volume content-variable calcium carboxylate derivatives.
    Yu HD; Tee SY; Han MY
    Chem Commun (Camb); 2013 May; 49(39):4229-31. PubMed ID: 22935875
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Calcium ions and osteoclastogenesis initiate the induction of bone formation by coral-derived macroporous constructs.
    Klar RM; Duarte R; Dix-Peek T; Dickens C; Ferretti C; Ripamonti U
    J Cell Mol Med; 2013 Nov; 17(11):1444-57. PubMed ID: 24106923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hetero-apertured micro/nanostructured ordered porous array: layer-by-layered construction and structure-induced sensing parameter controllability.
    Jia L; Cai W; Wang H; Sun F; Li Y
    ACS Nano; 2009 Sep; 3(9):2697-705. PubMed ID: 19702282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of molding pressure on fabrication of low-crystalline calcite block.
    Lin X; Matsuya S; Nakagawa M; Terada Y; Ishikawa K
    J Mater Sci Mater Med; 2008 Feb; 19(2):479-84. PubMed ID: 17607521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs.
    Mohammadi M; Mousavi Shaegh SA; Alibolandi M; Ebrahimzadeh MH; Tamayol A; Jaafari MR; Ramezani M
    J Control Release; 2018 Mar; 274():35-55. PubMed ID: 29410062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.